Exoskelett


Exoskelett

Ein Exoskelett ist eine Stützstruktur für einen Organismus, das eine stabile äußere Hülle um diesen bildet.

Inhaltsverzeichnis

Natürliche Exoskelette

Kopf einer Ameise

Im Gegensatz zu den Wirbeltieren besitzen alle Gliederfüßer (Arthropoda) wie Insekten, Kieferklauenträger und Krebstiere statt eines Innenskeletts ein stabilisierendes Außenskelett. (Nur bei einigen, meist winzigen, wasserlebenden Krebstieren wurde es sekundär zugunsten eines Hydroskeletts aufgegeben.)

Auch andere Tierstämme, wie die Mollusca und die Bryozoa haben Exoskelette.

Die Cuticula der Gliederfüßer, die funktional als Außenskelett wirkt, ist eine von der äußersten Zelllage (Epidermis) nach außen abgeschiedene Hülle. Es handelt sich um einen flexiblen Hochleistungs-Verbundwerkstoff aus mehreren Komponenten[1][2]. Grundbestandteil sind Fasern aus Chitin, einem stickstoffhaltigen Kohlenhydrat mit ähnlichen Eigenschaften wie Zellulose. Jeweils 19 Chitinfasern lagern sich anti-parallel zueinander zu einem kristallinen Bündel von etwa 3 Nanometer Dicke und 0,3 Mikrometer Länge (einer Mikrofibrille) aneinander. Die Chitin-Mikrofibrillen werden von Strukturproteinen umhüllt, die eine besondere Bindungsstelle für Chitin besitzen[3]. (Diese Proteinkomponente wurde früher, als man ihren Aufbau noch nicht kannte, Arthropodin genannt. Dieser Ausdruck ist veraltet, aber in älteren Büchern noch zu finden). Je nach Anteil und Zusammensetzung der Proteinkomponente[4]. entsteht entweder eine harte und feste Cuticula, die ausgehärtete Platten (Sklerite), Gliedmaßen, Haare, Mundwerkzeuge und ähnliche Strukturen hervorbringt, oder eine weiche und biegsame, die z.B. die flexible Hülle von vielen Insektenlarven aufbaut, oder die harten Sklerite durch eingeschaltete Gelenkmembranen beweglich hält. Flexible Cuticula enthält um die zwanzig, ausgehärtete kann über zweihundert verschiedene Proteine enthalten, die in zwölf untereinander jeweils ähnliche Proteinfamilien eingeteilt werden. Der Prozess des Aushärtens der Cuticula, Sklerotisierung genannt, beruht auf zwei Prozessen, die hormonell gesteuert[5] zueinander komplementär bei der Neubildung ablaufen. Einerseits wird Wasser ausgeschieden, wodurch sich die wasserabweisenden (hydrophoben) Bestandteile fester zusammenlagern. Andererseits wird ein Teil des Proteins fest zu einer Netzstruktur gebunden. Bei diesem Vorgang spielt Dopamin eine Schlüsselrolle. Die aus Dopamin synthetisierten Verbindungen N-Acetyldopamin (NADA) und N-beta-Alanyldopamin (NBAD) werden in die Cuticula abgegeben und hier enzymatisch zu hochreaktiven Chinonen oxydiert. Diese reagieren mit den Proteinen und bilden ein stabiles, nicht mehr abbaubares Netz von kovalenten Bindungen aus. Dabei bleibt von NADA sklerotisierte Cuticula farblos oder strohfarben, während von NBAD sklerotisierte dunkel gefärbt ist. Ein Teil des Dopamins kann auch zu dem dunklen Farbstoff Melanin umgewandelt werden, der vermutlich ebenfalls an der Vernetzung beteiligt ist und so das Außenskelett weiter verstärkt. Die je nach Lage und funktion so unterschiedlich sklerotisierten Chitin-Protein-Komplexe bilden dann wiederum Fasern aus. Diese größeren Fasern schließen sich zu plattenartigen Verbänden zusammen. Die fertige Cuticula besteht aus sehr vielen solchen Schichten, in denen die Fasern stets mehr oder weniger parallel ausgerichtet sind. In den aufeinander gestapelten Platten ist dann die Richtung der Fasern stets etwas zueinander versetzt, so dass die Gesamtstruktur aus schraubenförmig zueinander versetzten Faserplatten zusammengesetzt ist (nach ihrem Entdecker Bodigand-Struktur genannt). Dadurch erhöht sich die Festigkeit wesentlich, ähnlich der Konstruktion von Sperrholzplatten aus Holzlamellen, nur dass im Sperrholz die Einzelllamellen rechtwinklig zueinander und nicht schraubenförmig verdreht liegen.

Bei vielen Krebstieren und Tausendfüßern wird die Härte der Cuticula durch Mineralstoffeinlagerungen weiter erhöht[6][7]. Diese Panzerung besteht zum größten Teil aus Calciumcarbonat mit gewissen Anteilen von Phosphat und Magnesium. Der überwiegende Anteil dieser Substanz liegt amorph und nichtkristallin vor, ein geringerer Anteil, vor allem in der obersten, am stärksten beanspruchten Lage, kristallin als Calcit. Da Calciumcarbonat eigentlich spontan kristallisieren würde, ist es nur durch speziell gesteuerte Abscheidung möglich, es in amorphem Zustand zu halten. Dabei spielt der Magnesium- und der Phosphatanteil eine Rolle, aber auch spezielle organische Liganden, die die Kristallisation unterdrücken. Dadurch liegt auch der Phosphatanteil unkristallin vor (die kristalline Phase, Apatit genannt, kommt als Biomineral nur in anderen Organismengruppen vor. Möglicherweise bestanden die Außenskelette einiger ausgestorbener Gliederfüßer daraus). Der "Kalk"anteil des Panzers wird bei der Häutung zum Teil aufgelöst, im Körper zwischengespeichert und wird in den neuen Panzer wiedereingebaut. Erst seit wenigen Jahren ist bekannt, dass einige Gliederfüßer mit einem solchen Panzer diesen an besonders stark beanspruchten Stellen, wie an Mundwerkzeugen, Scheren und Stacheln, durch Einlagerungen von Schwermetallen wie Zink und Mangan und durch Halogene wie Chlorid und Bromid weiter verstärken[8]. Dabei wurde nachgewiesen, dass die Härte durch Zinkeinlagerung auf das Dreifache gesteigert werden kann. In welcher Form die Einlagerung erfolgt, ist noch nicht entdeckt worden.

Andere Bereiche des Außenskeletts sind nicht auf Härte, sondern auf Dehnbarkeit oder Biegsamkeit optimiert. Besondere Eigenschaften verleiht eine Familie von gummi-artigen Proteinen, Resilin genannt, die durch ihre Elastizität z.B. zum Sprungvermögen von Flöhen entscheidend beitragen.

Wie immer bei biologischen Konstruktionen ist das Außenskelett durch feinste Abstimmung von Materialeigenschaften und Form der Komponenten weiter optimiert. Stark beanspruchte Sklerite tragen innen rippenartige Verstärkungen, die sich außen z.T. durch Linien (Suturen genannt) verraten. Auch die Ansatzstellen der Muskeln sind oft durch Einsenkungen (hier Apodeme genannt) besonders vertärkt. Außerdem trägt die Cuticula eine Vielzahl von Schuppen, Haaren und Auswüchsen, darunter Sinneshaare von komplexestem inneren Aufbau.

Die Festigkeit des Außenskeletts ist je nach Aufbau in unterschiedlichen Partien sehr verschieden. Stärker sklerotisierte Bereiche können die Festigkeit von Hartholz oder Aluminium erreichen, einzelne Kanten können diejenige von Stahl erreichen. Im Mittel sind die stärker sklerotisierten Außenpanzer auch recht kleiner Gliederfüßer härte als die menschliche Haut, erreichen aber nicht die Werte von Knochen.

Da in diesem besonderen Fall eine vollständige Körperumhüllung ausgehärtet wurde, die auch passiv nicht mehr mitwachsen kann, muss das Exoskelett während des Wachstums komplett abgeworfen und wieder erneuert werden (Häutung). Neuerdings gibt es Hinweise darauf, dass nicht nur die Gliederfüßer, sondern auch andere sich häutende Wirbellose, deren Cuticula jedoch meist relativ unverhärtet geblieben ist, eine evolutionäre Abstammungsgemeinschaft bilden (Häutungstiere).

Künstliche Exoskelette

Äußere Stützstrukturen (Orthesen) kommen manchmal in der Medizin zum Einsatz, bis das natürliche Skelett wieder verheilt ist.

Als Exoskelett werden auch diverse Arten von Rüstungen bezeichnet, die die Bewegungen des Trägers unterstützen bzw. verstärken, indem am Exoskelett Gelenke durch Servomotoren angetrieben werden. Diese Arten von Exoskeletten werden momentan in den USA und Japan entwickelt.[9][10] Es liegen jedoch noch keine Berichte über ausgereifte militärische Modelle vor.[11] Über zivile Modelle liegen noch keine Berichte über den Einsatz vor, sondern nur verschiedene Konzeptstudien in unterschiedlicher Reife.

Der wahrscheinlich erste Versuch, ein Exoskelett zu bauen, war der Hardiman, einem erfolglosen experimentellen Prototyp von General Electric aus dem Jahr 1965.

Fiktive Exoskelette

In Superheldencomics, Science-Fiction sowie in Manga/Anime sind Exoskelette seit Jahrzehnten ein Mittel, um Charaktere ohne besondere Kräfte gegen übermenschliche Gegner bestehen zu lassen. Bekannte Beispiele sind hierbei z.B. Iron Man, Appleseed und Bubblegum Crisis. Zum ersten Mal wurden sie jedoch in größerem Maßstab im Roman Starship Troopers bekannt gemacht. Einem noch größeren Publikum wurde dann ein Exoskelett im Film Aliens – Die Rückkehr gezeigt, dessen ursprüngliche Aufgabe jedoch nicht der Kampf, sondern der Gütertransport war. Im dritten Teil der Matrix-Trilogie kommen ebenfalls wiederum mit schweren Waffen ausgerüstete Exoskelette zum Einsatz. Auch in Avatar – Aufbruch nach Pandora kommen große, bewaffnete Exoskelette vor.

Literatur

Weblinks

Wiktionary Wiktionary: Exoskelett – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Siehe auch

Einzelnachweise

  1. Julian F.V. Vincent & Ulrike G.K. Wegst (2004): Design and mechanical properties of insect cuticle. Arthropod Structure & Development 33 (2004) 187–199. doi:10.1016/j.asd.2004.05.006
  2. D. Raabe, A. Al-Sawalmih, S.B. Yi, H. Fabritius (2007): Preferred crystallographic texture of a-chitin as a microscopic and macroscopic design principle of the exoskeleton of the lobster Homarus americanus. Acta Biomaterialia 3 (2007): 882–895. doi:10.1016/j.actbio.2007.04.006
  3. John E. Rebers Judith H. Willis (2001): A conserved domain in arthropod cuticular proteins binds chitin. Insect Biochemistry and Molecular Biology Volume 31, Issue 11: 1083-1093. doi:10.1016/S0965-1748(01)00056-X
  4. eine Übersicht: Judith H. Willis (2010): Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochemy and Molecular Biology 40(3): 189–204. doi:10.1016/j.ibmb.2010.02.001
  5. Hans-Willi Honegger, Elizabeth M. Dewey, John Ewer (2008): Bursicon, the tanning hormone of insects: recent advances following the discovery of its molecular identity. Journal of Comparative Physiology A 194: 989–1005. doi:10.1007/s00359-008-0386-3
  6. Alexander Becker (2005): Structural Characterisation of Biominerals and Biomimetic Crystallisation of Calcium Carbonate. Diss. Universität Duisburg-Essen.
  7. Ali Al-Sawalmih, Chenghao Li, Stefan Siegel, Helge Fabritius, Sangbong Yi, Dierk Raabe, Peter Fratzl, Oskar Paris (2008): Microtexture and Chitin/Calcite Orientation Relationship in the Mineralized Exoskeleton of the American Lobster. Advanced Functional Materials 18: 3307–3314. doi:10.1002/adfm.200800520
  8. Robert M. S. Schofield (2005): Metal–Halogen Biomaterials. American Entomologist, Volume 51, Number 1: 45-47.
  9. Telepolis 13. November 2001: USA forschen an Starship Troopers Abgerufen am 22. April 2011
  10. golem.de 6. Mai 2008 Exoskelett für Soldaten durch Iron Man & Co Abgerufen am 22. April 2011
  11. UC Berkley News 3. März 2004: UC Berkeley researchers developing robotic exoskeleton Abgerufen am 22. April 2011

Wikimedia Foundation.

Synonyme:

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Exoskelett — (Außenskelett), s. Hautskelett …   Meyers Großes Konversations-Lexikon

  • Exoskelett — ⇒ Außenskelett …   Deutsch wörterbuch der biologie

  • Exoskelett — Chitinpanzer; Skelett * * * Exo|ske|lẹtt 〈n. 11; Biol.〉 Außenskelett (z. B. Chitinhülle der Kerbtiere) [<grch. exo „außerhalb“ + Skelett] * * * Exoskelẹtt,   das Ektoskelett. * * * Exo|ske|lẹtt, das; [e]s, e: Ektoskelett …   Universal-Lexikon

  • Exoskelett — E|xo|ske|lẹtt 〈n.; Gen.: (e)s, Pl.: e; Biol.〉 Außenskelett, z. B. Chitinhülle der Kerbtiere …   Lexikalische Deutsches Wörterbuch

  • Exoskelett — Exo|ske|lett vgl. ↑Ektoskelett …   Das große Fremdwörterbuch

  • Hardiman (Exoskelett) — Der Hardiman war der erste Prototyp eines künstlichen Exoskeletts von General Electric aus dem Jahr 1965. Dem Träger des Hardiman sollte es ermöglichen bis zu 680 kg schwere Lasten mit Leichtigkeit zu heben. Das Projekt scheiterte, da die… …   Deutsch Wikipedia

  • Außenskelett — Ein Exoskelett ist eine Stützstruktur für einen Organismus, das eine stabile äußere Hülle um diesen bildet. Inhaltsverzeichnis 1 Natürliche Exoskelette 2 Künstliche Exoskelette 3 Fiktive Exoskelette 4 Literatur 5 Weblink …   Deutsch Wikipedia

  • Ektoskelett — Ein Exoskelett ist eine Stützstruktur für einen Organismus, das eine stabile äußere Hülle um diesen bildet. Inhaltsverzeichnis 1 Natürliche Exoskelette 2 Künstliche Exoskelette 3 Fiktive Exoskelette 4 Literatur 5 Weblink …   Deutsch Wikipedia

  • Knochenbau — Das Skelett, auch Skelet (gr. skeletos „ausgetrockneter Körper“, „Mumie“), ist in der Biologie bzw. in der Anatomie ein Körperbestandteil, der die Stützstruktur des Organismus bildet. Prinzipiell gibt es zwei unterschiedliche Skelettarten: Das… …   Deutsch Wikipedia

  • Knochengerüst — Das Skelett, auch Skelet (gr. skeletos „ausgetrockneter Körper“, „Mumie“), ist in der Biologie bzw. in der Anatomie ein Körperbestandteil, der die Stützstruktur des Organismus bildet. Prinzipiell gibt es zwei unterschiedliche Skelettarten: Das… …   Deutsch Wikipedia


We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.