Finaltopologie

Finaltopologie

Als Finaltopologie bezüglich einer Abbildungsfamilie bezeichnet man in der Topologie die feinste Topologie auf einer Menge X, die diese Familie von Abbildungen aus anderen topologischen Räumen nach X stetig macht. Die Finaltopologie entsteht also durch „Vorwärtsübertragung“ der auf den Urbildräumen vorhandenen topologischen Strukturen auf die Menge X. Dies ist die Anwendung eines allgemeineren Konzepts aus der Kategorientheorie auf topologische Räume, mit der wichtige „natürliche Räume“ wie Quotienten- und Summentopologie in einen gemeinsamen Rahmen gestellt werden können.

Inhaltsverzeichnis

Definition

Gegeben ist eine Menge X, eine Familie von topologischen Räumen (Yi,Ti) und eine Familie von Abbildungen fi :Yi → X . Eine Topologie S auf X heißt Finaltopologie bezüglich der Familie (Yi,Ti,fi) wenn sie eine der folgenden gleichwertigen Eigenschaften hat:

Universelle Eigenschaft der Finaltopologie
  1. S ist die feinste Topologie auf X, bezüglich der alle Abbildungen fi stetig sind.
  2. Eine Teilmenge O von X ist offen (also in S) genau dann, wenn alle ihre Urbilder f_i^{-1}(O) in den jeweiligen Urbildräumen offen sind.
  3. Eine Funktion g von X in einen topologischen Raum Z ist genau dann stetig, wenn g \circ f_i stetig ist für jedes fi der Familie.

Bemerkungen

Die drei Formulierungen der Definition beleuchten unterschiedliche Aspekte der Finaltopologie:

  1. Hier wird sie als Infimum gewisser Topologien im Verband aller Topologien auf X angesehen: Durch jede einzelne Abbildung fi wird aus dem Urbildraum Yi eine topologische Struktur Si auf X übertragen – die Bilder von in Yi offenen Mengen bilden jeweils eine Basis für eine solche Topologie auf X – und die Finaltopologie S ist der Durchschnitt all dieser Topologien! Mit dieser Definition lässt sich die Existenz der Finaltopologie beweisen.
  2. Diese Definition ist konstruktiv. Mit ihr kann man für beliebige Teilmengen von X entscheiden, ob sie in der Finaltopologie offen sind. Hieraus ergibt sich leicht die Eindeutigkeit dieser Topologie.
  3. Die abstrakte Charakterisierung durch eine universelle Eigenschaft rechtfertigt die Bezeichnung „Final“-Topologie und gestattet es, diese Strukturen im allgemeineren Rahmen der Kategorientheorie zu betrachten. Die Initialtopologie kann durch die hierzu duale Eigenschaft charakterisiert werden.

Beispiele

  • Die Quotiententopologie ist die Finaltopologie bezüglich der kanonischen Projektion auf den Quotientenraum.
  • Der Topologische Summenraum einer Familie Xi von Topologischen Räumen ist die Finaltopologie auf der disjunkten Vereinigungsmenge der Familie bezüglich der kanonischen Inklusionsabbildungen.
  • Die Kombination der Summen- und Quotientenraumbildung, also das „Verkleben“ mehrerer Topologischer Räume, kann mit der Finaltopologie in einem Schritt vorgenommen werden.

Literatur


Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Finale Topologie — Als Finaltopologie bezüglich einer Abbildungsfamilie bezeichnet man in der Topologie die feinste Topologie auf einer Menge X, die diese Familie von Abbildungen aus anderen topologischen Räumen nach X stetig macht. Die Finaltopologie entsteht also …   Deutsch Wikipedia

  • Quotientennorm — Quotientenabbildung ist ein Begriff aus der Funktionalanalysis. Quotientenabbildungen sind lineare Abbildungen, die eine bestimmte Faktorraumstruktur erzeugen. Inhaltsverzeichnis 1 Definition 2 Quotientennorm 3 Eigenschaften 4 Lokalkonvexe Räume …   Deutsch Wikipedia

  • Beschränkte Approximationseigenschaft — Die Approximationseigenschaft ist eine Eigenschaft von Banachräumen, bei der es um die Approximation kompakter Operatoren durch lineare Operatoren endlichen Ranges geht. Es war vierzig Jahre lang ein offenes Problem, ob alle Banachräume diese… …   Deutsch Wikipedia

  • Bornologisch — Bornologische Räume sind in dem mathematischen Teilgebiet Funktionalanalysis spezielle lokalkonvexe Räume, für deren lineare Operatoren die aus der Theorie der normierten Räume bekannte Äquivalenz von Stetigkeit und Beschränktheit gilt. Diese… …   Deutsch Wikipedia

  • DF-Raum — (DF) Räume sind eine im mathematischen Teilgebiet der Funktionalanalysis betrachtete Klasse spezieller lokalkonvexer Räume, die eine wichtige Rolle in der Dualitätstheorie von Frécheträumen spielt. Dualräume von Frécheträumen sind (DF) Räume und… …   Deutsch Wikipedia

  • GDF-Raum — (DF) Räume sind eine im mathematischen Teilgebiet der Funktionalanalysis betrachtete Klasse spezieller lokalkonvexer Räume, die eine wichtige Rolle in der Dualitätstheorie von Frécheträumen spielt. Dualräume von Frécheträumen sind (DF) Räume und… …   Deutsch Wikipedia

  • Identifizierungstopologie — Die Quotiententopologie (auch Identifizierungstopologie genannt) ist ein Begriff aus dem mathematischen Teilgebiet der Topologie. Anschaulich entsteht diese Topologie, wenn man Punkte „zusammenklebt“, d.h. zwei ehemals verschiedene Punkte als ein …   Deutsch Wikipedia

  • Köthe-Raum — Ein Folgenraum ist ein in der Mathematik betrachteter Raum, dessen Punkte Zahlenfolgen sind. Viele in der Funktionalanalysis auftretende Vektorräume sind Folgenräume oder können durch solche repräsentiert werden. Zu den Beispielen zählen u.a. die …   Deutsch Wikipedia

  • Metrische Approximationseigenschaft — Die Approximationseigenschaft ist eine Eigenschaft von Banachräumen, bei der es um die Approximation kompakter Operatoren durch lineare Operatoren endlichen Ranges geht. Es war vierzig Jahre lang ein offenes Problem, ob alle Banachräume diese… …   Deutsch Wikipedia

  • Montelraum — Der mathematische Begriff Montel Raum bezeichnet eine spezielle Klasse lokalkonvexer Räume. Ihren Namen tragen sie nach dem Satz von Montel aus der Funktionentheorie. Viele lokalkonvexe Räume aus der Theorie der Distributionen sind Montelräume.… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”