Gauß-Markov Theorem


Gauß-Markov Theorem
Redundanz Die Artikel Satz von Gauß-Markow und Minimalvarianter linearer erwartungstreuer Schätzer überschneiden sich thematisch. Hilf mit, die Artikel besser voneinander abzugrenzen oder zu vereinigen. Beteilige dich dazu an der Diskussion über diese Überschneidungen. Bitte entferne diesen Baustein erst nach vollständiger Abarbeitung der Redundanz. Chrisqwq 17:27, 24. Nov. 2006 (CET)

Der Satz von Gauß-Markow ist ein mathematischer Satz aus dem Bereich der Statistik. Er ist nach den Mathematikern Carl Friedrich Gauß und Andrei Andrejewitsch Markow benannt.

In Worten lautet dieser Satz: Der Kleinste-Quadrate-Schätzer ist ein minimalvarianter linearer erwartungstreuer Schätzer (BLUE – best linear unbiased estimator) in einem linearen Modell, wenn die zufälligen Fehler (nicht-erklärten Abweichungen):

Mathematisch kann dies auf folgende Weise wiedergegeben werden: Voraussetzung ist, dass man ein Lineares Modell in der Form

\underline Y = \underline X \underline \beta + \underline \epsilon

vorliegen hat, wobei \underline Y eine n-dimensionale und \underline \beta eine p-dimensionale Zufallsvariable sei (siehe Regressionsanalyse). Hierbei nimmt man von der Datenmatrix \underline X \in \mathbb{R}^{n \times p} an, dass sie vollen (Spalten-)Rang hat, das heißt es gilt \mbox{Rang}(\underline{X})=p \; bzw. det(\underline{X}^T \underline{X}) > 0. Für den Erwartungswert der Fehler nimmt man an, dass E(\underline{\epsilon})=0 \; ist. Ferner erwartet man für die Varianz der Fehler, dass \mbox{Cov}(\underline{\epsilon})=\sigma^2 I_n gilt.

Damit erhält man:

  1. \underline b = (\underline {X}^T \underline X )^{-1} \underline {X}^T \underline y ist BLUE für \underline \beta.
  2. \mbox{Cov}(\underline{b})=\sigma^2 (\underline{X}^T \underline{X})^{-1}
  3. s^2 = SS_{Res} / (n-p) \; ist unverzerrter Schätzer für \sigma^2 \;

Wobei SS_{Res} \ die Residual Sum of Squares bezeichnet.

Weblinks


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Gauss-Markov-Theorem — Die Artikel Satz von Gauß Markow und Minimalvarianter linearer erwartungstreuer Schätzer überschneiden sich thematisch. Hilf mit, die Artikel besser voneinander abzugrenzen oder zu vereinigen. Beteilige dich dazu an der Diskussion über diese… …   Deutsch Wikipedia

  • Carl Friedrich Gauss — Infobox Scientist box width = 300px name = Carl Friedrich Gauss caption = Johann Carl Friedrich Gauss (1777 1855), painted by Christian Albrecht Jensen birth date = birth date|1777|4|30|df=y birth place = Braunschweig, Electorate of Brunswick… …   Wikipedia

  • Loi de réciprocité quadratique — En mathématiques, et plus précisément en théorie algébrique des nombres, la loi de réciprocité quadratique, conjecturée par Euler et Legendre et correctement démontrée pour la première fois par Gauss, établit un lien entre la résolubilité de deux …   Wikipédia en Français


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.