Gerichtete Menge

Gerichtete Menge

Eine gerichtete Menge bezeichnet in der Mathematik eine nichtleere Menge X versehen mit einer Relation  \triangleleft über X (genannt Richtung), die folgenden Axiomen genügt:


\begin{array}{lll}
  (R1)& \forall x \in X\colon x \triangleleft x & (\mathrm{Reflexivit\ddot at}) \\
  (R2)& \forall x,y,z \in X\colon (x \triangleleft y) \and (y \triangleleft z) \Rightarrow (x \triangleleft z) & (\mathrm{Transitivit\ddot at}) \\
  (R3)& \forall x,y \in X\ \exists z \in X\colon (x \triangleleft z) \and (y \triangleleft z) & (\mbox{Schreibweise: } \mathit{x,y \triangleleft z}) \\
\end{array}

Um die Richtung hervorzuheben (auf einer Menge können durchaus mehrere Richtungen erklärt sein) nennt man auch das geordnete Paar \left(X,\triangleleft \right) gerichtete Menge. Sprechweise für x \triangleleft y ist „x vor y“ oder auch „y nach x“. Unter y \triangleright x versteht man x \triangleleft y.

Anschauliche Deutung

Das eigentliche Richtungsaxiom ist (R3). Es erlaubt, an jedem Punkt x der Menge X einen weiteren Punkt z zu finden, der „hinter“ x liegt, indem man in (R3) y:=x setzt. Damit kann man in X einen „Kurs“ einschlagen: Man wähle einen Punkt x0 aus (ein solcher existiert, da X nicht leer ist). Zu diesem bestimme man durch (R3) mit x=y=x0 einen Punkt x1. Zu diesen beiden bestimme man wieder durch (R3) mit x=x0 und y=x1 einen Punkt x2. Analog bestimme man zu x1 und x2 einen Punkt x3, und man erhält induktiv fortfahrend eine Folge (x_n)_{n\in\mathbb{N}} mit x_0 \triangleleft x_1 \triangleleft x_2 \triangleleft \cdots \triangleleft x_k \triangleleft \cdots.

Beispiele

  •  X \subseteq \mathbb{C}^n; \, \rho \in \mathbb{C}^n\ \mathrm{fest}; \, 
     \forall x,y \in X: (x \triangleleft y) :\Leftrightarrow \left\| y - \rho \right\| \le \left\| x - \rho \right\| \quad
(Sprechweise: „X ist auf ρ gerichtet“, „ρ ist Richtungszentrum von X“) Man kann durch diese Richtung den Grenzwert einer Funktion f: X \to \mathbb{C}^m für x \to \rho als (Netz)Konvergenz des zugehörigen Netzes auffassen.
  •  X = \mathbb{N}; \, \forall n,m \in X: (n \triangleleft m) :\Leftrightarrow n \leq m
  •  X = \mathbb{R}; \, \forall x,y \in X: (x \triangleleft y) :\Leftrightarrow x \leq y
    Mit Hilfe dieser gerichteten Mengen lassen sich Grenzwerte von Funktionen bzw. Folgen für x \mbox{ bzw. } n \to \infty, ähnlich dem ersten Beispiel, als (Netz)Konvergenzen ihrer zugehörigen Netze auffassen.
  •  X = \mathbb{N}^2; \, \forall (n,m),(p,q) \in X: ((n,m) \triangleleft (p,q)) :\Leftrightarrow (n \leq p) \and (m \leq q)
    Mit dieser Richtung auf \mathbb{N}^2 lässt sich Konvergenz von Doppelfolgen, wiederum als Netzkonvergenz, definieren.
  • M eine beliebige nicht-leere Menge und  X = \mathcal{P}(M); \, \forall A, B \in X: (A \triangleleft B) :\Leftrightarrow A \subseteq B

Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Gerichtete Kante — Dieses Stichwortverzeichnis enthält kurze Definitionen und Erklärungen zu den wichtigsten graphentheoretischen Begriffen. A Abstand Siehe: Distanz. Achromatische Zahl Die achromatische Zahl ψ(G) eines Graphen G ist die größte Zahl k, für die G… …   Deutsch Wikipedia

  • Gerichtete Spende — Als gerichtete Spende wird eine Blutspende dann bezeichnet, wenn sie für einen zuvor bestimmten Empfänger entnommen wird, was zum Beispiel bei der sogenannten Verwandtentransplantation oder Verwandtenspende auftritt. Diese zunächst naheliegende… …   Deutsch Wikipedia

  • Größte stabile Menge — Knotenüberdeckungen, Cliquen und stabile Mengen sind Begriffe der Graphentheorie und bezeichnen spezielle Teilmengen von Knoten in Graphen. Das Finden von minimalen Knotenüberdeckungen und größten Cliquen bzw. stabilen Mengen gilt als… …   Deutsch Wikipedia

  • Maximale stabile Menge — Knotenüberdeckungen, Cliquen und stabile Mengen sind Begriffe der Graphentheorie und bezeichnen spezielle Teilmengen von Knoten in Graphen. Das Finden von minimalen Knotenüberdeckungen und größten Cliquen bzw. stabilen Mengen gilt als… …   Deutsch Wikipedia

  • Stabile Menge — Knotenüberdeckungen, Cliquen und stabile Mengen sind Begriffe der Graphentheorie und bezeichnen spezielle Teilmengen von Knoten in Graphen. Das Finden von minimalen Knotenüberdeckungen und größten Cliquen bzw. stabilen Mengen gilt als… …   Deutsch Wikipedia

  • Unabhängige Menge — Knotenüberdeckungen, Cliquen und stabile Mengen sind Begriffe der Graphentheorie und bezeichnen spezielle Teilmengen von Knoten in Graphen. Das Finden von minimalen Knotenüberdeckungen und größten Cliquen bzw. stabilen Mengen gilt als… …   Deutsch Wikipedia

  • Echter Filter — In der Mathematik ist ein Filter eine nichtleere, nach unten gerichtete Oberhalb Menge. Ein Filter ist eine Teilmenge einer halbgeordneten Menge mit bestimmten Eigenschaften. Anschaulich betrachtet enthält ein Filter Elemente, die „zu groß“ sind… …   Deutsch Wikipedia

  • Hauptfilter — In der Mathematik ist ein Filter eine nichtleere, nach unten gerichtete Oberhalb Menge. Ein Filter ist eine Teilmenge einer halbgeordneten Menge mit bestimmten Eigenschaften. Anschaulich betrachtet enthält ein Filter Elemente, die „zu groß“ sind… …   Deutsch Wikipedia

  • Mengenfilter — In der Mathematik ist ein Filter eine nichtleere, nach unten gerichtete Oberhalb Menge. Ein Filter ist eine Teilmenge einer halbgeordneten Menge mit bestimmten Eigenschaften. Anschaulich betrachtet enthält ein Filter Elemente, die „zu groß“ sind… …   Deutsch Wikipedia

  • Ordnungsideal — In der Mathematik ist ein Filter eine nichtleere, nach unten gerichtete Oberhalb Menge. Ein Filter ist eine Teilmenge einer halbgeordneten Menge mit bestimmten Eigenschaften. Anschaulich betrachtet enthält ein Filter Elemente, die „zu groß“ sind… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”