Gleichmäßig stetig

Gleichmäßig stetig

Gleichmäßige Stetigkeit ist ein Begriff aus der Analysis. Er bezeichnet einen Spezialfall der Stetigkeit.

Inhaltsverzeichnis

Definition

Sei D eine Teilmenge aus \R, kurz D\subseteq\R.

Eine Abbildung f:D\rightarrow \R heißt gleichmäßig stetig genau dann, wenn

\forall\varepsilon>0~\exists\delta>0~\forall x,x_0\in D:\,|x-x_0|<\delta\Rightarrow |f(x)-f(x_0)|<\varepsilon.

Zur besseren Unterscheidung bezeichnet man die gewöhnliche Stetigkeit, wenn sie in jedem Punkt von D gegeben ist, auch als punktweise Stetigkeit.

Die Besonderheit der gleichmäßigen Stetigkeit besteht darin, dass δ nur von \varepsilon und nicht, wie bei der punktweisen Stetigkeit, noch zusätzlich von der Stelle x0 abhängt.

Anschaulich bedeutet das: Zu jeder noch so kleinen senkrechten Rechteckseite \varepsilon kann man eine hinreichend kleine waagrechte Rechteckseite δ finden, sodass, wenn man das Rechteck mit den Seiten \varepsilon;\delta geeignet auf dem Funktionsgraphen entlangführt, dieser immer nur die senkrechten Rechtecksseiten schneidet. (Bsp.: Wurzelfunktion auf [0, \infty)).

Beispiele

Schaubild der nicht-gleichmäßig stetigen Funktion f(x) = x2.

Betrachte die Funktion

 f:\R\mapsto\R^+ mit f(x) = x2 (s. Abbildung).

Diese ist stetig, aber nicht gleichmäßig stetig: Je weiter rechts man zwei Punkte mit einem Abstand kleiner als δ wählt, desto größer wird der Abstand der beiden Funktionswerte. Dies widerspricht der Definition gleichmäßiger Stetigkeit: Unabhängig von den Punkten muss der Abstand der Funktionswerte kleiner als ein vorgegebenes ε sein. Das ist bei dieser Funktion nicht der Fall.

Weiterhin gilt: Jede Einschränkung von f auf ein kompaktes Intervall ist gleichmäßig stetig. Der Beweis lässt sich mit dem Satz von Heine führen.

Ein anderes Beispiel ist die stetige Funktion

 f:\R^+\mapsto\R^+ mit  f(x) = \sqrt{x}

die gleichmäßig stetig, sogar hölderstetig, aber nicht lipschitzstetig ist.

Verallgemeinerung: metrische Räume

Allgemeiner wird auch folgende Definition verwendet:

Seien (X,dx),(Y,dy) zwei metrische Räume. Eine Abbildung f:X\rightarrow Y heißt gleichmäßig stetig genau dann, wenn

\forall\varepsilon>0~\exists\delta>0~\forall x,x_0\in X:d_x(x, x_0)<\delta\Rightarrow d_y(f(x), f(x_0))<\varepsilon.

Verallgemeinerung: uniforme Räume

Noch allgemeiner heißt in der Topologie eine Funktion f: X \to Y zwischen zwei uniformen Räumen (X, \mathcal U_X) und (Y, \mathcal U_Y) gleichmäßig stetig, wenn das Urbild jeder Nachbarschaft wieder eine Nachbarschaft ist, wenn also (f \times f)^{-1}(\mathcal U_Y) \subset \mathcal U_X.

Eigenschaften

Es gilt: Ist f gleichmäßig stetig auf einer Menge M, dann ist f auch stetig in jedem Punkt x_0 \in M und sogar stetig fortsetzbar auf den Abschluss \overline{M}. Umgekehrt gibt es jedoch stetige Funktionen, die nicht gleichmäßig stetig sind.

Ein einfaches Kriterium zum Nachweis gleichmäßiger Stetigkeit ist der Satz von Heine: Jede stetige Funktion auf einer kompakten Menge ist gleichmäßig stetig.

Ist (x_n)_{n \in \mathbb{N}} eine Cauchy-Folge im Raum M und ist f : M \to N gleichmäßig stetig, so ist auch (f(x_n))_{n \in \mathbb{N}} eine Cauchy-Folge in N. Dies gilt im Allgemeinen nicht für Funktionen, die nur stetig sind, wie das Beispiel M = (0,1), f(x) = \frac1x und x_n = \frac1n zeigt.

Im \mathbb{R}^n: Polstellen kann es auf einer gleichmäßig stetigen Funktion nicht geben, da bei gegen unendlich strebender Steigung der Abstand der Funktionwerte beliebig groß wird, δ also kein reeller Wert sein kann.

Eine spezielle Form der gleichmäßigen Stetigkeit ist die Lipschitz-Stetigkeit.

Sonstiges

  • Gleichmäßige Stetigkeit ist nicht zu verwechseln mit gleichmäßiger Konvergenz, die etwas über die Art der Konvergenz von Funktionenfolgen aussagt.

Siehe auch


Wikimedia Foundation.

См. также в других словарях:

  • Stetig — Die Stetigkeit ist ein Konzept der Mathematik, das vor allem in den Teilgebieten der Analysis und der Topologie von zentraler Bedeutung ist. Eine Funktion heißt stetig, wenn verschwindend kleine Änderungen des Argumentes (der Argumente) nur zu… …   Deutsch Wikipedia

  • stetig — unbeirrbar; gleichmäßig; kontinuierlich; fortdauernd; ohne Unterbrechung; stet; feststehend; alle nasenlang (umgangssprachlich); invariabel; unabänderlich; …   Universal-Lexikon

  • Gleichmäßig beschränkt — Die Eigenschaft der Beschränktheit wird in verschiedenen Bereichen der Mathematik einer Menge zugeordnet. Die Menge wird dann als (nach unten oder oben) beschränkte Menge bezeichnet. Damit ist zunächst gemeint, dass alle Elemente der Menge… …   Deutsch Wikipedia

  • gleichmäßig — waagerecht; plan; gerade; flach; eben; planar; wellenlos; waagrecht; unbeirrbar; stetig; regelmäßig; regulär; …   Universal-Lexikon

  • gleichmäßig — ausgeglichen, beständig, einheitlich, gleichbleibend, gleichförmig, in einem Gleichmaß, kontinuierlich, ohne Veränderungen, regelmäßig, schwankungsfrei, stetig. * * * gleichmäßig:1.〈diegleichenMaßeaufweisend〉ebenmäßig·symmetrisch+proportional;auch… …   Das Wörterbuch der Synonyme

  • stetig — ste̲·tig Adj; nur attr od adv; gleichmäßig und ohne Unterbrechung <etwas steigt, wächst, sinkt stetig; etwas nimmt stetig ab> || hierzu Ste̲·tig·keit die; nur Sg …   Langenscheidt Großwörterbuch Deutsch als Fremdsprache

  • stetig — stet »beständig, gleichmäßig fortdauernd«: Das nur dt. Adjektiv (mhd. stæ̅t‹e›, ahd. stāti, »fest‹stehend›, beständig«) ist eine Bildung zu der unter ↑ stehen dargestellten idg. Wurzel. Im Nhd. häufiger ist die gleichbedeutende Ableitung stetig… …   Das Herkunftswörterbuch

  • Gleichmässig stetig — Gleichmäßige Stetigkeit ist ein Begriff aus der Analysis. Er bezeichnet einen Spezialfall der Stetigkeit. Inhaltsverzeichnis 1 Definition 1.1 Beispiele 1.2 Verallgemeinerung: metrische Räume 1.3 Verallgemeinerung: uniforme Räume …   Deutsch Wikipedia

  • Lipschitz-stetig — Lipschitz Stetigkeit (nach Rudolf Lipschitz) ist ein Begriff aus der Analysis. Inhaltsverzeichnis 1 Definition 2 Eigenschaften 3 Anwendung 4 Beispiele // …   Deutsch Wikipedia

  • Rechtsseitig stetig — Die Stetigkeit ist ein Konzept der Mathematik, das vor allem in den Teilgebieten der Analysis und der Topologie von zentraler Bedeutung ist. Eine Funktion heißt stetig, wenn verschwindend kleine Änderungen des Argumentes (der Argumente) nur zu… …   Deutsch Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»