Gleitreibungskoeffizient


Gleitreibungskoeffizient

Der Reibungskoeffizient, auch Reibungszahl genannt (Formelzeichen µ oder auch f, dimensionslos), ist ein Maß dafür, wie groß die Reibkräfte sind, die zwischen zwei Festkörpern wirken. Der Begriff gehört zum Fachgebiet der Tribologie.

Es gibt auch einen Rollwiderstand, der in diesem Artikel nicht beschrieben wird. Dieser tritt beim Abwälzen eines Körpers auf einem anderen auf.

Inhaltsverzeichnis

Physikalische Bedeutung

Die Angabe eines Reibungskoeffizienten setzt voraus, dass die Art der Reibung als Coulombsche Reibung betrachtet wird, d. h. es gibt einen Wert für die Haftreibung (wenn keine Relativbewegung zwischen den Reibflächen besteht) und einen Wert für die Gleitreibung, wenn sich die Flächen relativ zueinander bewegen. Der Gleitreibungsbeiwert ist dabei unabhängig von der Gleitgeschwindigkeit und damit konstant. In der Praxis ist eine entsprechende Temperatur-, Geschwindigkeits- und Druckabhängigkeit zu erkennen, welche auf einen Einfluss der Oberflächenänderung und Beschaffenheit der niemals ideal ebenen Fläche hindeutet (aber nicht auf den Reibwert selbst) und damit die Materialeigenschaft scheinbar beeinflusst.

Gemessen wird der Reibungskoeffizient an polierten Oberflächen ohne mechanische Verzahnung. Ausschlaggebend sind die Adhäsions- und Kohäsionskräfte zwischen den Materialien. Es bilden sich je nach Material Van der Waals-Kräfte oder in polarisierten Werkstoffen Wasserstoffbrücken ähnliche Kräfte zwischen den Oberflächen. Am höchsten ist die Werkstoffhaftung bei ionischen Werkstoffen wie z. B. Kochsalz.

Berechnung der Reibungskraft

Mit Hilfe des Reibungskoeffizienten lässt sich die maximale Haft- bzw. die Gleitreibungskraft zwischen zwei Körpern berechnen.

Haftreibung: F_{\mathrm{R, H}}  \le \mu_{\mathrm{H}} \cdot F_N
maximale Haftreibung: F_{\mathrm{Rmax}}  = \mu_{\mathrm{H}} \cdot F_N
Gleitreibung: F_{\mathrm{R, G}}  = \mu_{\mathrm{G}}  \cdot F_N


Dabei ist FR die Reibungskraft, µH bzw. µG der Reibungskoeffizient und FN die Normalkraft (Kraft senkrecht zur Fläche). Der Reibungskoeffizient bestimmt also, wie groß die Reibungskraft im Verhältnis zur Normalkraft ist; eine höhere Reibungszahl bedeutet eine größere Reibungskraft.

Möchte man z. B. einen Metallklotz schieben, so muss man zunächst eine Kraft aufbringen, die höher als die Haftreibungskraft ist, um den Klotz zu bewegen. Gleitet der Klotz am Untergrund, so muss dann nur mehr die kleinere Gleitreibungskraft überwunden werden. Weil die Reibkoeffizienten vom Untergrund (trocken, nass, ...) abhängig sind, hängen im gleichen Maße auch die Reibkräfte davon ab.

Um die Haftung zu verändern, kann man auch die Normalkraft verändern, was sich wiederum aus der Formel erkennen lässt. Auf dem Ebenen entspricht die Normalkraft der Gewichtskraft; mit einem höheren Gewicht erreicht man hier also eine höhere Haftung. Im Motorsport ist eine hohe Masse des Kraftfahrzeugs unerwünscht, da man diese auch beschleunigen muss; hier wird die Normalkraft durch Spoiler erhöht, die den von vorne kommenden Wind zum Anpressen des Fahrzeugs an den Boden nutzen. Auf Rennstrecken werden oft Kurven angeschrägt, um die Haftfläche der resultierenden Kraft aus Gewichtskraft und Fliehkraft anzupassen; somit wird auch hier die Normalkraft erhöht, um eine höhere Haftung zu erzielen.

Beispiele

Die Reibungskoeffizienten aus Tabellen sind immer nur ungefähre Angaben. Die Reibung hängt von vielen unterschiedlichen Faktoren ab (Materialpaarung, Oberfläche, Schmierung, Temperatur, Feuchte, Verschleiß, Normalkraft etc.), so dass in einer Tabelle nicht die "richtigen" Werte gefunden werden können.

Die genauesten Ergebnisse erhält man aus einem Versuch unter realen Bedingungen. Auch hier ist jedoch zu beachten, dass sich die Verhältnisse zwischen Versuch und realem Einsatz ändern können.

Der Wert für µ kann beliebige Werte zwischen 0 und \infin annehmen.

Es gilt immer:

 \mu \le \mu_{\mathrm{H}}
Dieser Artikel oder Abschnitt ist nicht hinreichend mit Belegen (Literatur, Webseiten oder Einzelnachweisen) versehen. Die fraglichen Angaben werden daher möglicherweise demnächst gelöscht. Hilf Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Bitte entferne erst danach diese Warnmarkierung.
Stoff Haftreibung trocken (Richtwerte) Gleitreibung trocken (Richtwerte)
Stahl zu Stahl 0,08-0,25 0,06-0,20
Stahl zu PTFE 0,04 0,04
Aluminium zu Aluminium 1,05 1,04
Nickel zu Nickel 1,5 1,2
NaCl zu NaCl 4,5 0,9
Gummi zu Asphalt (trocken) 0,9-1,3 0,8
Holz zu Stein 0,70 0,30

Haftreibungszahlen

Haftreibungszahlen µH (Richtwerte)[1]
Materialpaarung trocken wenig fettig geschmiert mit Wasser
Bronze auf Bronze 0,18 0,11
Bronze auf Grauguß 0,28 0,21
Bronze auf Stahl 0,19 0,18
Grauguß auf Eiche 0,65
Grauguß auf Grauguß 0,16 0,19
Eiche auf Eiche 0,54 0,71
Lederriemen auf Eiche 0,47
Lederriemen auf Grauguß 0,48 0,28 0,12 0,38
Messing auf Eiche 0,62 0,16
Stahl auf Bronze 0,19
Stahl auf Eiche 0,11 0,65
Stahl auf Eis 0,027
Stahl auf Grauguß 0,19
Stahl auf Stahl 0,15 0,13
Hanfseil auf Holz 0,5

Die Reibung von Reifengummi auf Asphalt wird zwar näherungsweise mit der Coulombschen Reibung beschrieben, bei genauerer Betrachtung handelt es sich jedoch nicht um diese Form der Reibung, da eine Verzahnung von Gummi und Fahrbahn eintritt. Ebenso ist Schlupf (Teilgleiten) erforderlich um Kräfte übertragen zu können. Als Haftreibungskraft wird im Zusammenhang mit Reifen das Maximum der µ-Schlupf Kurve bezeichnet. Die eingesetzte Gummimischung ist abhängig von der Belastung und damit der Temperaturentwicklung des Reifens. Reifen mit größerer Auflagefläche haben im allgemeinen weichere Gummimischungen mit höherem Reibkoeffizienten insbesondere in Bereichen höheren Schlupfes, die z. B. kürzere Bremswege erlauben. Die Verzahnung ist abhängig von der Flächenpressung und der Oberflächengeometrie. Dieses kann bei sehr rauhen Oberflächen dazu führen, dass hochbelastete Systeme mit kleineren Auflageflächen einen höheren Reibkoeffizienten aufbauen.

Haftreibungszahlen µH (Richtwerte)[1]
Paarung trocken nass, sauber nass, geschmiert vereist
Luftreifen auf Ackerboden 0,45 0,2 <0,2
Luftreifen auf Asphalt 0,55 0,3 0,2 <0,2
Luftreifen auf Beton 0,65 0,5 0,3 <0,2
Luftreifen auf Erdweg 0,45 0,2 <0,2
Luftreifen auf Holzpflaster 0,55 0,3 0,2 <0,2
Luftreifen auf Kleinpflaster 0,55 0,3 0,2 <0,2
Luftreifen auf Kopfsteinpflaster 0,6 0,4 0,3 <0,2
Luftreifen auf Schotter, gewalzt 0,7 0,5 0,4 <0,2
Luftreifen auf Schotter, gewalzt, geteert 0,6 0,4 0,3 <0,2
Luftreifen auf Teerdecke 0,55 0,4 0,3 <0,2
Greiferräder auf Ackerboden 0,5
Kettenfahrzeuge auf Ackerboden 0,8

Gleitreibungszahlen

Gleitreibungszahlen µG (Richtwerte)[1]
Materialpaarung trocken wenig fettig geschmiert mit Wasser
Bronze auf Bronze 0,20 0,06
Bronze auf Grauguß 0,21 0,08
Bronze auf Stahl 0,18 0,16 0,07
Grauguß auf Bronze 0,20 0,15 0,08
Grauguß auf Eiche 0,49 0,19 0,22
Grauguß auf Grauguß 0,28 0,15 0,08 0,31
Eiche auf Eiche 0,34 0,1 0,25
Lederriemen auf Eiche 0,27 0,29
Lederriemen auf Grauguß 0,56 0,27 0,12 0,36
Messing auf Eiche 0,60 0,44? 0,24
Stahl auf Bronze 0,18 0,16 0,07
Stahl auf Eiche 0,5 0,08 0,26
Stahl auf Eis 0,014
Stahl auf Grauguß 0,18 0,01
Stahl auf Stahl 0,12 0,01
Stahl auf Weißmetall 0,2 0,1 0,04
blockiertes Autorad auf Pflaster 0,5 0,2
blockiertes Autorad auf Asphalt 0,3 0,15

Geometrische Interpretation

Resultierende Kraft innerhalb des Reibkegels

Man kann µ auch als Tangens des kleinsten Winkels φ betrachten, bei dem ein Körper auf einer geneigten Ebene nach unten rutschen würde. Es gilt μ = tan(φ).

Beispiel Auto: Der Tangens ist aus dem Alltag als Steigung von ansteigenden Straßen und Gefällen bekannt, die auf Verkehrsschildern angegeben wird (zum Beispiel: 12% Steigung bedeuten, auf einer Länge von 100m steigt die Strecke um 12m). Bei einem Haftreibungskoeffizienten von 1 kann man also Steigungen von maximal 100% (45°) überwinden. Real ist die Steigfähigkeit von Fahrzeugen meist durch die installierte Motorleistung und das Gesamtübersetzungsverhältnis der Getriebe begrenzt - Ausnahmen sind schlechte Strassenverhältnisse. Bei Glatteis oder schneebedeckter Straße wird die Haftreibungszahl sehr klein, so dass schon leichte Steigungen nicht überwunden werden können oder das Bremsen bergab nicht mehr möglich ist.

Reibkegel: Innerhalb des Reibkegels (Abbildung rechts) sind Systeme auch bei Belastung stabil (z. B. Leiter auf Untergrund) und werden als selbsthemmend bezeichnet, außerhalb des Reibkegels reicht die Reibkraft nicht mehr aus, um das System in Ruhe zu halten, es tritt eine Bewegung auf. Relevante technische Systeme sind z. B. Schneckengetriebe, die in Abhängigkeit von Schraubensteigung, Materialpaarung und Schmierverhältnissen selbsthemmend sind oder nicht.

Grenzen

Erreichen die durch die auftretenden Kräfte verursachten Spannungen die Fließspannung, endet der Gültigkeitsbereich des Coulombschen Modelles. An seine Stelle tritt das Reibfaktormodell.

Häufige Irrtümer

"µ ist immer kleiner als 1"

Gelegentlich wird behauptet, dass µ < 1 gelten müsse. µ = 1 bedeutet lediglich, dass Normal- und Reibungskraft gleich sind. Bei etlichen Materialpaarungen, beispielsweise mit Silikonkautschuk oder Acrylkautschuk beschichteten Oberflächen, ist der Reibkoeffizient wesentlich größer als 1.

Haftreibung: „FR = µH · FN

Häufig wird für die Haftreibung die Formel FRH = µH FN angegeben. Der so errechnete Wert bezeichnet jedoch nur den Grenzfall der maximal möglichen Schub- oder Zugkraft, die der Reibungskraft FR entgegenwirkt und bei der noch der Stillstand des Objekts möglich ist. Wird diese überschritten, wirkt sofort die kleinere Gleitreibungskraft: FRGµG FN. Augenscheinlich wird dies z.B. bei Lawinen oder Erdrutschen. Hier befinden sich die Massen nahe der Haftkraft. Kleine Erschütterungen lassen die Haftreibung örtlich überschreiten.

Siehe auch

Reibungswinkel

Quellen

  1. a b c Horst Kuchling: Tabellenbuch der Physik, VEB Fachbuchverlag Leipzig 1986, ISBN 3-87144-097-3

Literatur

  • Popov, Valentin L.: Kontaktmechanik und Reibung. Ein Lehr- und Anwendungsbuch von der Nanotribologie bis zur numerischen Simulation, Springer-Verlag, 2009, 328 S., ISBN 978-3-540-88836-9.

Weblinks


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Gleitreibungskoeffizient — dinaminės trinties faktorius statusas T sritis Standartizacija ir metrologija apibrėžtis Slystančio kūno trinties jėgos ir statmenosios jėgos dalmuo. atitikmenys: angl. dynamic friction factor vok. Gleitreibungskoeffizient, m; Gleitreibungszahl,… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Gleitreibungskoeffizient — dinaminės trinties faktorius statusas T sritis fizika atitikmenys: angl. dynamic friction factor vok. Gleitreibungskoeffizient, m; Gleitreibungszahl, f rus. коэффициент трения скольжения, m pranc. coefficient de frottement dynamique, m …   Fizikos terminų žodynas

  • Beiwert — Ein Koeffizient (von lat. coefficere: mitbewirken) ist eine zu einem anderen rechnerischen Ausdruck beigefügte Zahl bzw. eine Variable, die sie vertritt. Der Koeffizient ist ein Parameter (Mathematik) bzw. eine Kennzahl (Physik, Ökonomie) oder… …   Deutsch Wikipedia

  • Fahrradhelm — (Mikroschalen Helm) Ein Fahrradhelm (schweizerisch auch Velohelm) ist ein Sporthelm für Radfahrer, der bei einem Unfall die auf den Schädel des Radfahrers einwirkenden Kräfte verringern soll, um so Verletzungen zu verhindern oder abzumildern.… …   Deutsch Wikipedia

  • Geneigte Ebene — Eine schiefe Ebene oder geneigte Ebene ist in der Mechanik eine ebene Fläche, die gegen die Horizontale geneigt ist. Sie wird verwendet, um den Kraftaufwand zur Höhenveränderung einer Masse zu verringern. Der Arbeitsaufwand bleibt jedoch… …   Deutsch Wikipedia

  • Schiefe Ebene — Eine schiefe, schräge oder geneigte Ebene (kurz rsp. umgangssprachlich: Hang, Schiefe, Schräge bzw. Neigung) ist in der Mechanik eine ebene Fläche, die gegen die Horizontale geneigt ist. Sie wird verwendet, um den Kraftaufwand zur… …   Deutsch Wikipedia

  • Koeffizient — Diese Seite wird derzeit im Sinne der Richtlinien für Begriffsklärungen auf der Diskussionsseite des Wikiprojektes Begriffsklärungen diskutiert. Hilf mit, die Mängel zu beseitigen, und beteilige dich an der Diskussion! Hinweise zur Überarbeitung …   Deutsch Wikipedia

  • Rollende Reibung — Der Rollwiderstand (auch: Rollreibung oder rollende Reibung) entspricht dem Verformungswiderstand eines sich abwälzenden Körpers. Als Kennwert wird der Rollwiderstandskoeffizient cR (auch: Rollwiderstandsbeiwert, Rollreibungsbeiwert usw.)… …   Deutsch Wikipedia

  • Rollreibung — Der Rollwiderstand (auch: Rollreibung oder rollende Reibung) entspricht dem Verformungswiderstand eines sich abwälzenden Körpers. Als Kennwert wird der Rollwiderstandskoeffizient cR (auch: Rollwiderstandsbeiwert, Rollreibungsbeiwert usw.)… …   Deutsch Wikipedia

  • Rollreibungsbeiwert — Der Rollwiderstand (auch: Rollreibung oder rollende Reibung) entspricht dem Verformungswiderstand eines sich abwälzenden Körpers. Als Kennwert wird der Rollwiderstandskoeffizient cR (auch: Rollwiderstandsbeiwert, Rollreibungsbeiwert usw.)… …   Deutsch Wikipedia