Komplexe Struktur


Komplexe Struktur

Komplexe Mannigfaltigkeiten sind topologische Mannigfaltigkeiten, deren Kartenwechselhomöomorphismen sogar konform sind. Diese Objekte werden in der Differentialgeometrie und der Funktionentheorie untersucht. Ihre Definition ist analog zu der Definition der differenzierbaren Mannigfaltigkeit, jedoch kann im Gegensatz zu den differenzierbaren Mannigfaltigkeiten nicht jede komplexe Mannigfaltigkeit in den \C^n eingebettet werden.

Inhaltsverzeichnis

Definition

Sei M ein topologischer Hausdorff-Raum, welcher dem zweiten Abzählbarkeitsaxiom genügt.

Eine Karte ist eine offene Teilmenge U\subset M zusammen mit einem Homöomorphismus

\phi \colon U \to \phi(U) \subset \mathbb C^n.

Eine Karte ist also ein 2-Tupel (U,φ).

Ein komplexer Atlas ist eine Menge solcher Karten, so dass

M = \bigcup_{i \in \N} U_i

gilt, mit der Eigenschaft, dass für je zwei Karten (Uii) und (Ujj) die Kartenwechselabbildungen

\phi_i\circ\phi_j^{-1}\colon\phi_j(U_i\cap U_j)\to\phi_i(U_i\cap U_j)

konform (biholomorph) sind.

Eine komplexe Mannigfaltigkeit' ist ein topologischer Hausdorff-Raum, welcher dem zweiten Abzählbarkeitsaxiom genügt und einen Atlas besitzt. Man sagt M hat Dimension n, wenn die Kartenwechselhomöomorphismen in den \C^n abbilden.

Eigenschaften

  • Jede komplexe Mannigfaltigkeit der Dimension n, kann auch als glatte Mannigfaltigkeit der Dimension 2n aufgefasst werden.
  • Der Raum der holomorphen Funktion \mathcal{O}(M) von M nach \C enthält, falls M kompakt ist, nur die konstanten Funktion. Deshalb interessiert man sich dafür, ob eine komplexe Mannigfaltigkeit holomorph separabel ist.
  • Kompakte, komplexe Mannigfaltigkeiten können nicht in den \C^n eingebettet werden.

Beispiele

Fastkomplexe Mannigfaltigkeiten

Eine Abschwächung des Begriffs komplexe Mannigfaltigkeit ist der Begriff der fastkomplexen Mannigfaltigkeit. Während komplexe Mannigfaltigkeiten lokal wie der komplexe Raum aussehen, tun dies fastkomplexe nur „infinitesimal“, d. h. die Tangentialräume sind (auf untereinander verträgliche Art) komplexe Vektorräume. Um einen reellen Vektorraum zu einem komplexen zu machen, muss man festlegen, was das Produkt eines Vektors mit der imaginären Einheit i sein soll. Dies ist im Fall des Tangentialraums TpM die Aufgabe der Abbildung Jp.

Eine fastkomplexe Struktur auf einer glatten Mannigfaltigkeit M ist eine glatte Abbildung J:TM\to TM mit der Eigenschaft, dass die Einschränkung J_p:=J|_{T_pM} auf den Tangentialraum zu jedem Punkt p\in M eine bijektive lineare Abbildung ist, die

J_p \circ J_p = - \mathrm{id}.

erfüllt. (Dies entspricht der Gleichheit i2 = − 1)

Eine fastkomplexe Mannigfaltigkeit ist eine glatte Mannigfaltigkeit M zusammen mit einer fastkomplexen Struktur auf M.

Seien M und N zwei fastkomplexe Mannigfaltigkeiten mit den jeweiligen fastkomplexen Strukturen JM und JN. Eine stetig differenzierbare Abbildung f:M\to N heißt holomorph (oder pseudo-holomorph), wenn der Push-Forward df:TM\to TN von f mit den fastkomplexen Strukturen von M und N verträglich ist, das heißt

df\circ J_M = J_N\circ df

gilt.

Eine komplexe Mannigfaltigkeit ist automatisch auch eine fastkomplexe. Durch die komplexe Struktur werden die Tangentialräume zu komplexen Vektorräumen und durch Jv: = iv für v \in TM wird eine fastkomplexe Struktur definiert. Umgekehrt braucht eine fastkomplexe Mannigfaltigkeit im allgemeinen keine komplexe Struktur zu besitzen. Falls es aber einen Atlas gibt mit Karten, deren Zielbereich ein komplexer Vektorraum ist und die im Sinne der fastkomplexen Struktur holomorph sind, dann ist dieser Atlas ein komplexer Atlas, der die fastkomplexe Struktur induziert. Man kann deshalb komplexe Mannigfaltigkeiten auch definieren als fastkomplexe Mannigfaltigkeiten, die einen holomorphen Atlas besitzen.

Riemannsche Fläche

Im reell zweidimensionalen (d.h. im komplex eindimensionalen) ist jede fastkomplexe Mannigfaltigkeit eine komplexe Mannigfaltigkeit, also eine riemannsche Fläche, was man durch das Lösen der Beltrami-Gleichung zeigen kann.

Literatur

  • Klaus Fritzsche & Hans Grauert - From Holomorphic Functions to Complex Manifolds, Springer-Verlag, ISBN 0-387-95395-7

Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • komplexe Struktur — sudėtingoji sandara statusas T sritis fizika atitikmenys: angl. complex structure vok. komplexe Struktur, f; komplizierte Struktur, f rus. сложная структура, f pranc. structure complexe, f …   Fizikos terminų žodynas

  • Komplexe Mannigfaltigkeit — Komplexe Mannigfaltigkeiten sind topologische Mannigfaltigkeiten, deren Kartenwechselhomöomorphismen sogar konform sind. Diese Objekte werden in der Differentialgeometrie und der Funktionentheorie untersucht. Ihre Definition ist analog zu der… …   Deutsch Wikipedia

  • Komplexe Geometrie — Komplexe Mannigfaltigkeiten sind topologische Mannigfaltigkeiten, deren Kartenwechselhomöomorphismen sogar konform sind. Diese Objekte werden in der Differentialgeometrie und der Funktionentheorie untersucht. Ihre Definition ist analog zu der… …   Deutsch Wikipedia

  • Komplexe Zahl — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass die Gleichung x2 + 1 = 0 lösbar wird. Dies gelingt durch Einführung einer neuen Zahl i mit der Eigenschaft i2 = − 1. Diese Zahl i wird als imaginäre Einheit… …   Deutsch Wikipedia

  • Komplexe Ebene — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… …   Deutsch Wikipedia

  • Komplexe Zahlen — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… …   Deutsch Wikipedia

  • Komplexe Zahlenebene — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… …   Deutsch Wikipedia

  • Struktur (Datentyp) — Der Datentyp Struktur (engl. structure) bezeichnet einen Verbund. Durch seine Fähigkeit andere Variablen verschiedener Datentypen zu umfassen, kann eine Struktur zu übersichtlicherem und dynamischem Quelltext verhelfen. Inhaltsverzeichnis 1… …   Deutsch Wikipedia

  • komplizierte Struktur — sudėtingoji sandara statusas T sritis fizika atitikmenys: angl. complex structure vok. komplexe Struktur, f; komplizierte Struktur, f rus. сложная структура, f pranc. structure complexe, f …   Fizikos terminų žodynas

  • Endohedrale Komplexe — Als endohedrale Komplexe bezeichnet man Fullerene, in deren Hohlraum ein Atom oder ein Cluster eingebracht wurde. Man unterscheidet zwei Verbindungsklassen. Dotierung mit elektropositiven Metallen (Metallfulleride) Die Dotierung mit… …   Deutsch Wikipedia