Sinus- und Kosinus-Transformation

Sinus- und Kosinus-Transformation

Die Sinus- und Kosinus-Transformation sind zwei Varianten der kontinuierlichen Fourier-Transformation, die ausschließlich für reelle Zahlen definiert sind, im Gegensatz zur Fourier-Transformation, welche für komplexe Zahlen definiert ist. Sie sind Integraltransformationen mit Anwendungen im Bereich der Signalverarbeitung. Davon abgeleitet sind für zeitdiskrete Signalfolgen die Diskrete Kosinustransformation (DCT) und die Diskrete Sinustransformation (DST).

Inhaltsverzeichnis

Allgemeines

Der Kern der Fourier-Transformation lässt sich mittels der Eulerschen Identität in einen Real- und Imaginärteil aufspalten:

\mathrm{e}^{\mathrm{j}\,x} = \cos\left(x \right) + \mathrm{j} \cdot \sin\left( x \right)

mit j als die imaginäre Einheit. Der Realteil wird als Kern der Kosinus-Transformation und der Imaginärteil als Kern der Sinus-Transformation verwendet. Die Kosinus-Funktion ist eine gerade Funktion, die Kosinus-Transformation bildet den geraden Signalanteil der Fourier-Transformierte eines reellen Signals ab. Analog dazu bildet die ungerade Sinus-Funktion den ungeraden Signalanteil der Fourier-Transformierte eines reellen Signals ab.

Sinus-Transformation

Die Sinus-Transformation ist für reelle Signale y(t) definiert durch:

 \mathrm{Y_s}(f) = \mathcal{SIN}\{y(t)\} = \int_{-\infty}^{\infty} y(t) \sin(2 \pi f t) \,\mathrm{d} t.

Kosinus-Transformation

Die Kosinus-Transformation ist für reelle Signale y(t) definiert durch:

 \mathrm{Y_c}(f) = \mathcal{COS}\{y(t)\} = \int_{-\infty}^{\infty} y(t) \cos(2 \pi f t) \,\mathrm{d} t.

Zusammenhang

Die Fourier-Transformation

 \mathrm{Y}(f) = \mathcal{F}\{y(t)\} = \int_{-\infty}^{\infty} y(t)\, e^{-2\pi \mathrm{j} f \cdot t} \,\mathrm{d} t

lässt sich für reelle Signale y(t) aus der Sinus- und Kosinus-Transformation bilden:

\mathcal{F}\{y(t)\} = \mathcal{COS}\{y(t)\} - \mathrm{j} \cdot \mathcal{SIN}\{y(t)\}.

Für die speziellen Fälle von reellen und geraden Signalen geht die Fourier-Transformation in die Kosinus-Transformation über, für reelle und ungerade Signale geht sie, bis auf einen konstanten Vorfaktor, in die Sinus-Transformation über.

Literatur

  • Fernando Puente León, Uwe Kiencke, Holger Jäkel: Signale und Systeme. 5. Auflage. Oldenbourg, 2011, ISBN 978-3-486-59748-6.

Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Sinus Hyperbolicus und Kosinus Hyperbolicus — Eine Gerade durch den Nullpunkt schneidet die Hyperbel x2 − y2 = 1 im Punkt , wobei A für die Fläche zwischen der Geraden, ihrem Spiegelbild bezogen auf die x Achse und der Hyperbel steht. (Siehe …   Deutsch Wikipedia

  • Fourier-Transformation — Die Fourier Transformation (genauer die kontinuierliche Fourier Transformation; Aussprache des Namens: fur je) ist eine Methode der Fourier Analysis, die es erlaubt, kontinuierliche, aperiodische Signale in ein kontinuierliches Spektrum zu… …   Deutsch Wikipedia

  • Petzval-Transformation — Die Laplace Transformation (benannt nach Pierre Simon Laplace) ist eine einseitige Integraltransformation, die eine gegebene Funktion f(t) vom reellen Zeitbereich (t = Zeit) in eine Funktion F(s) im komplexen Spektralbereich (Frequenzbereich;… …   Deutsch Wikipedia

  • Fourier Transformation — Dieser Artikel gibt eine Übersicht über die üblichen Varianten der Fourier Transformation. Häufig wird die kontinuierliche Fourier Transformation kurz als Fourier Transformation bezeichnet; für anschauliche Beispiele siehe Artikel Fourier Analyse …   Deutsch Wikipedia

  • Zeitdiskrete Fourier-Transformation — Dieser Artikel gibt eine Übersicht über die üblichen Varianten der Fourier Transformation. Häufig wird die kontinuierliche Fourier Transformation kurz als Fourier Transformation bezeichnet; für anschauliche Beispiele siehe Artikel Fourier Analyse …   Deutsch Wikipedia

  • Box-Muller-Transformation — Graphische Veranschaulichung der Box Muller Methode Die Box Muller Methode (nach George Edward Pelham Box und Mervin Edgar Muller 1958) ist ein Verfahren zur Erzeugung normalverteilter Zufallszahlen. Inhaltsverzeichnis 1 Idee …   Deutsch Wikipedia

  • Fourier-Entwicklung — Als Fourierreihe (nach Jean Baptiste Joseph Fourier) einer periodischen Funktion f(x), die abschnittsweise stetig ist, bezeichnet man deren Entwicklung in eine Funktionenreihe aus Sinus und Kosinusfunktionen. Die Basisfunktionen der Fourierreihe… …   Deutsch Wikipedia

  • Fourier-Reihe — Als Fourierreihe (nach Jean Baptiste Joseph Fourier) einer periodischen Funktion f(x), die abschnittsweise stetig ist, bezeichnet man deren Entwicklung in eine Funktionenreihe aus Sinus und Kosinusfunktionen. Die Basisfunktionen der Fourierreihe… …   Deutsch Wikipedia

  • Fourierentwicklung — Als Fourierreihe (nach Jean Baptiste Joseph Fourier) einer periodischen Funktion f(x), die abschnittsweise stetig ist, bezeichnet man deren Entwicklung in eine Funktionenreihe aus Sinus und Kosinusfunktionen. Die Basisfunktionen der Fourierreihe… …   Deutsch Wikipedia

  • Fourierkoeffizient — Als Fourierreihe (nach Jean Baptiste Joseph Fourier) einer periodischen Funktion f(x), die abschnittsweise stetig ist, bezeichnet man deren Entwicklung in eine Funktionenreihe aus Sinus und Kosinusfunktionen. Die Basisfunktionen der Fourierreihe… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”