Masse (Physik)
Physikalische Größe
Name Masse
Formelzeichen der Größe m
Formelzeichen der Dimension M
Größen- und
Einheiten-
system
Einheit Dimension
SI Kilogramm (kg) M
CGS Gramm (g) M

Die Masse ist eine Eigenschaft der Materie und eine physikalische Grundgröße. Sie wird gemäß dem internationalen Einheitensystem in der Einheit Kilogramm angegeben. Das Formelzeichen ist meist m. Die Masse ist eine extensive Größe.

Die Masse ist eine Ursache von Gravitation (schwere Masse). Zugleich bestimmt sie die Trägheit eines Körpers. Das heißt, sie ist als träge Masse ein Maß für seinen Widerstand gegen Änderungen seines Bewegungszustands. Die Gleichheit von träger und schwerer Masse ist durch Experimente höchst genau bestätigt.[1] Die klassische Mechanik hat für diese Gleichheit keine Erklärung. In der Allgemeinen Relativitätstheorie wird die „Wesensgleichheit“ von Schwere und Trägheit in Form des Äquivalenzprinzips vorausgesetzt.

Im allgemeinen Sprachgebrauch wird die Masse auch als Gewicht bezeichnet. Eine Gleichsetzung mit der ebenfalls so bezeichneten Gewichtskraft ist jedoch falsch.

Inhaltsverzeichnis

Definition

Mit der Masse eines Körpers sind drei klassische Eigenschaften verbunden:

  1. der Körper setzt jeder Bewegungsänderung einen Widerstand entgegen – er ist träge. (Trägheit)
  2. zwei Körper ziehen sich aufgrund ihrer Masse gegenseitig an. Diese Anziehung wird als Gravitation bezeichnet. (passive Gravitationsladung)
  3. sie bewirkt die auf einen Körper wirkende (Gravitations-)Kraft. (aktive Gravitationsladung)[2]

Trägheit und Gravitation werden in der nichtrelativistischen Physik durch träge und schwere Masse bestimmt. Allerdings sind auch masselose Teilchen, wie das Photon, träge. Sie werden von Gravitationsfeldern abgelenkt und verursachen in der Allgemeinen Relativitätstheorie Gravitation.

Die SI-Basiseinheit der Masse Kilogramm (kg) wird über eine Referenzmasse definiert: Das Kilogramm ist gleich der Masse des internationalen Kilogrammprototyps.

Messung

Die Messung der Masse eines ruhenden Körpers erfolgt durch Vergleich mit einer Referenzmasse. Zwei Massen sind gleich, wenn sie am selben Ort in einem Schwerefeld die gleiche Gewichtskraft haben. Dies kann man mit einer Balkenwaage überprüfen. Dabei ist die Stärke des Schwerefeldes unerheblich, es muss nur an den Orten der beiden Körper gleich und von Null verschieden sein.

Indirekte Massenbestimmung

Die Masse kann über Kräfte und Beschleunigungen bestimmt werden. In der newtonschen Mechanik ist jede Bewegungsänderung proportional zu der Kraft, die die Bewegungsänderung verursacht hat (s. u.: F = m \cdot a). Masse ist somit die Proportionalitätskonstante aus Kraft und Beschleunigung: m=\frac{F}{a}. Die Beschleunigung a gibt dabei die durch eine Kraft F verursachte Geschwindigkeitsänderung an.

Beispiel 1 (zur trägen Masse): Wird ein Körper durch die konstante Kraft F=6 \,\mathrm{N} in 2 Sekunden um 3 \,\mathrm{\tfrac{m}{s}} schneller, so wird er mit a= \frac{\Delta v}{\Delta t} = \frac{3 \,\mathrm{\tfrac{m}{s}}}{2 \,\mathrm{s}}=1{,}5 \,\mathrm\tfrac{m}{s^2} beschleunigt. Seine Masse beträgt dann: m=\frac{F}{a}=\frac{6 \,\mathrm{N}}{1{,}5 \,\mathrm\tfrac{m}{s^2}}=4\,\mathrm{kg}.

Beispiel 2 (zur schweren Masse): Durch die Gravitation der Erde werden frei fallende Körper mit a = 9{,}81\,\mathrm\tfrac{m}{s^2} (= Ortsfaktor g = 9{,}81\,\mathrm\tfrac{N}{kg}) beschleunigt. Ein Körper, der auf der Erdoberfläche mit der Gewichtskraft F=6 \,\mathrm{N} angezogen wird, hat die Masse m=\frac{F}{a}=\frac{6 \,\mathrm{N}}{9{,}81 \,\mathrm\tfrac{m}{s^2}}=0{,}621\,\mathrm{kg}.

Die träge Masse lässt sich zum Beispiel durch die Kraft messen, die erforderlich ist, damit ein Körper mit gleichmäßiger Bahngeschwindigkeit eine Kreisbahn durchläuft (Zentripetalkraft). Die durch die Kraft bewirkte Beschleunigung ändert die Richtung der Geschwindigkeit (auf die Kreisbahn), nicht den Geschwindigkeitsbetrag. Bei einem geladenen Teilchen im Magnetfeld kann man bei bekannter Geschwindigkeit und Magnetfeldstärke am Kreisradius das Verhältnis von Ladung zu träger Masse ablesen.

Entwicklung des Massenbegriffs

Newtonsche Mechanik

Die newtonsche Mechanik erklärt die Äquivalenz von schwerer und träger Masse nicht. Sie tritt als empirische Tatsache auf, ebenso wie die Massenerhaltung.

Als schwere Masse ms bezeichnet man die Quelle der Gravitationskraft. Die von der Masse Ms auf die Masse ms ausgeübte Kraft ist

\vec{F} = G\frac{m_\mathrm{s} M_\mathrm{s}}{|\vec{r}|^2} \cdot \frac{\vec{r}}{|\vec{r}|}

wobei die Massen punkt- oder kugelförmig gedacht sind und \vec{r} der Vektor von ms nach Ms ist. G ist die Gravitationskonstante, eine Naturkonstante.


Die träge Masse m ist in der newtonschen Mechanik der Proportionalitätsfaktor zwischen Kraft \vec{F} und Beschleunigung \vec{a}\,.

\vec{F} = m \vec{a}\,.

Aus dem 2. Newtonschen Axiom (Aktionsprinzip)

\vec{F} = \frac{\mathrm d \vec{p}}{\mathrm d t}\,.

ergibt sich mit dem Impuls p=m \cdot v für Körper mit konstanter Masse die Bewegungsgleichung zu „Kraft ist Masse mal Beschleunigung“, der "Grundgleichung der Mechanik":

\vec{F} = m \vec{a}\,.

Dies gilt aber nicht in relativistischer Physik oder für Körper mit zeitlich veränderlichen Massen, wie etwa eine Rakete.

Spezielle Relativitätstheorie

Der Begriff der schweren Masse tritt in der speziellen Relativitätstheorie nicht auf. Sie befasst sich mit der Dynamik von Körpern unter Vernachlässigung von Gravitation.

In der speziellen Relativitätstheorie ist der Impuls \vec{p} nicht mehr Masse m mal Geschwindigkeit \vec{v}, sondern beträgt bei Teilchen, die langsamer sind als Licht,

\vec{p} = \frac{m\,\vec{v}}{\sqrt{1-v^2/c^2}}\,.

Ein heute noch in der Experimentalphysik und der populären Literatur häufig verwendeter Begriff ist die relativistische Masse

M(\vec{v}) = \frac{m}{\sqrt{1-v^2/c^2}}\,.

Diese Bezeichnung wird jedoch in der theoretischen Physik gemieden, da die relativistische Masse, in das newtonsche Gravitationspotential oder Kraftgesetz \vec{F}=m\, \vec{a} eingesetzt, zu unzutreffenden Gleichungen führt.

Die Kraft \vec{F} bewirkt in der speziellen Relativitätstheorie die zeitliche Änderung des Impulses

\vec F = \frac{\mathrm{d}\vec p}{\mathrm{d}t} =  \frac{m\,\vec a}{\sqrt{1- v^2/c^2}} + 
\frac{m\,\vec{v}\,(\vec{v}\cdot\vec{a})}{c^2\,(\sqrt{1- v^2/c^2})^3}

oder, nach der Beschleunigung \vec{a} aufgelöst,

\vec{a} = \frac{1}{\sqrt{m^2+ p^2/c^2}} 
\bigl(\vec{F} - \vec v (\vec v \cdot \vec F)/c^2\bigr)\,.

Man sieht, dass die Beschleunigung \vec a nicht immer in die Richtung der Kraft zeigt, sondern auch einen Anteil in Richtung der Geschwindigkeit hat. Eine ausweislich ihres Rückstoßes gleiche Kraft  \vec F bewirkt bei unterschiedlicher Geschwindigkeit des Teilchens eine unterschiedliche Beschleunigung.

Die träge Masse ist also kein Proportionalitätsfaktor von Kraft und Beschleunigung. Die unterschiedliche Trägheit in Bewegungsrichtung und quer dazu hatte man zunächst mit den Begriffen der longitudinalen und transversalen Masse zu erfassen versucht, die aber heute nicht mehr verwendet werden.

So wie in Newtons Mechanik nennt man den geschwindigkeitsunabhängigen Parameter m in der Relation, die den Impuls eines Teilchens als Funktion seiner Geschwindigkeit angibt, die träge Masse. Sie wird historisch Ruhemasse, in moderner Sprechweise auch invariante Masse oder einfach Masse genannt.

Die Masse verknüpft die Energie E und den Impuls über die Energie-Impuls-Beziehung

\left(m\, c^2\right)^2 = E^2 - p^2 c^2.

Für einen ruhenden Körper (\vec p = 0) wird daraus Einsteins berühmte Gleichung E_{\text{Ruhe}}=m\, c^2, welche die Äquivalenz von Masse und Energie ausdrückt.

Lichtschnelle Teilchen sind masselos. Ihr Impuls ist nicht durch die obige Funktion der Geschwindigkeit gegeben, sondern genügt der Energie-Impuls-Beziehung E = |\vec{p}| c\,. Auch masselose, lichtschnelle Teilchen sind träge und benötigen zur Beschleunigung Kraft. In Bewegungsrichtung sind sie sogar unendlich träge: durch keine Kraft in Bewegungsrichtung können sie (auf einer differenzierbaren Bahn) beschleunigt werden.

Massenvielfache

Weil die Energie eines ruhenden Teilchens durch seine Masse festgelegt ist, stimmt die Masse zusammengesetzter Teilchen nicht unbedingt mit der Summe der Massen der Bestandteile überein.

Nur wenn die Bindungsenergie, die beim Zusammensetzen frei wird, so klein ist, dass sie sich nicht messbar auf die Gesamtmasse auswirkt, ist die Gesamtmasse die Summe der Massen der Bestandteile. Das ist bei chemisch gebundenen Molekülen der Fall: die Masse eines Moleküls ist mit üblichen Messgeräten nicht messbar unterscheidbar von der Summe der Massen der gebundenen Atome.

Bei Atomkernen ist das messbar falsch: die Bindungsenergie zeigt sich dort als Massendefekt: die Massensumme der Protonen und Neutronen, die den Kern ausmachen, ist (um etwa ein Prozent) größer als die Kernmasse.

Allgemeine Relativitätstheorie

In der allgemeinen Relativitätstheorie wird der freie Fall von Teilchen im Gravitationsfeld als kräftefrei verstanden. Kräfte bewirken, dass die Bahnkurven vom freien Fall abweichen. An der Größe der Kraft, mit der Teilchen vom freien Fall abgehalten werden, zeigt sich ihre träge Masse.

Die Weltlinien frei-fallender Teilchen sind die Geraden (genauer: Geodäten) der Raumzeit. Sie sind in Übereinstimmung mit allen Beobachtungen vollständig durch den anfänglichen Ort und die anfängliche Geschwindigkeit festgelegt und hängen nicht von anderen Eigenschaften, Größe oder Masse, des frei-fallenden Teilchens ab (Äquivalenzprinzip). Da die Raumzeit gekrümmt ist, ergibt die Projektion der Geodäten auf den dreidimensionalen Ortsraum normalerweise keine Geraden, sondern beispielsweise Wurfparabeln.

Quelle der Gravitation ist in der Grundgleichung der Allgemeinen Relativitätstheorie der Energie-Impuls-Tensor, das heißt, Energiedichte, Impulsdichten, Energieströme und Impulsströme. Da die Energie ruhender Teilchen durch ihre Masse bestimmt ist, bewirkt die Masse ruhender Teilchen Gravitation. Kann man die Bewegung der gravitationserzeugenden Körper vernachlässigen und ist die Geschwindigkeit der frei-fallenden Teilchen klein gegen die Lichtgeschwindigkeit, so wirkt sich die Masse der gravitationserzeugenden Körper wie in Newtons Gravitationstheorie aus. Für Licht als Testteilchen trifft diese Einschränkung nicht zu: es wird an der Sonne doppelt so stark abgelenkt wie nach Newton zu erwarten.

An ihrer gravitativen Auswirkung kann man in großen Abständen von den gravitationserzeugenden Energie- und Impulsdichten die ADM-Masse ablesen. Sie verändert sich nicht im Laufe der Zeit, da Strahlung nicht in endlicher Zeit unendliche räumliche Entfernungen durchläuft. Die Bondi-Masse wird in der Allgemeinen Relativitätstheorie für große Zeiten und dabei mit Lichtgeschwindigkeit zunehmenden Abständen abgelesen. Sie vermindert sich durch Abstrahlung und ist nicht negativ, das heißt, in der Allgemeinen Relativitätstheorie ist die Energie, die abgestrahlt werden kann, nach unten beschränkt.

Ursprung der Massen der Elementarteilchen

Im Standardmodell der Elementarteilchenphysik wird der Ursprung der Massen der Elementarteilchen durch den Higgs-Mechanismus erklärt. Durch Wechselwirkung mit dem Higgs-Boson, einem bisher noch unbeobachteten skalaren Elementarteilchen, erhalten sie eine Masse, wenn das Higgsfeld auch im Vakuum nicht verschwindet.[3]

Die Massen der Baryonen, wozu auch Proton und Neutron gehören, sind viel größer als die Massen der Quarks, aus denen sie bestehen und werden dynamisch erklärt. So steckt ein Großteil der Protonenmasse nicht in den drei Quarks, sondern in der komplizierten Wechselwirkung der Quarks und Gluonen miteinander. Die Quarks sind so stark aneinander gebunden, dass die Energie, die in der Bindung zwischen den Quarks steckt, einen erheblichen Teil der Masse ausmacht. Ansätze zur Berechnung liefern Gitterrechnungen in der QCD.

Die Baryonen machen den größten Teil der Masse sichtbarer Materie aus. Es wird vermutet, dass „WIMPs“ (engl. weakly interactive massive particles) wie etwa das hypothetische LSP (engl. lightest supersymmetric particle) die nicht sichtbare Dunkle Materie aufbauen könnten.

Sprachgebrauch: Masse und Gewicht

Im alltäglichen Sprachgebrauch wird häufig nicht zwischen Masse und Gewichtskraft unterschieden, etwa bei Übergewicht, Leergewicht oder Abtropfgewicht. Da zudem die Masseeinheit Kilogramm den meisten Menschen geläufiger ist als die Einheit der Gewichtskraft Newton oder gar Kilopond, werden Kräfte häufig in Kilogramm angegeben, wobei die zugehörige Gewichtskraft an der Erdoberfläche gemeint ist.

Beim Gleichsetzen von Masse und Gewicht kann jedoch der falsche Eindruck entstehen, die Masse hinge vom Ort ab. So ist die folgende Aussage missverständlich: „Auf dem Mond wiegt ein 90 kg schwerer Mensch nur 15 kg.“ Klarer ist: „Auf dem Mond ist die Gewichtskraft auf einen Menschen mit 90 kg so groß wie auf einen Körper von 15 kg auf der Erde.“

Das Wort "Gewicht" sollte laut DIN 1305 vermieden werden, wenn Missverständnisse zu befürchten sind.

Einzelnachweise und Fußnoten

  1. Messungungen an verschiedenen Objekten in einer sich drehenden Torsionswaage ergaben eine Abweichung von weniger als 3{,}1 \times 10^{-15}, vgl. S. Schlamminger, K.-Y. Choi, T. A. Wagner, J. H. Gundlach, E. G. Adelberger: Test of the Equivalence Principle Using a Rotating Torsion Balance. In: Physical Review Letters. 100, Nr. 4, 2008, S. 041101, arXiv:/0712.0607, doi:10.1103/PhysRevLett.100.041101.
  2. Markus Pössel: Träge und schwere Masse. Einstein Online, 2010.
  3. In supersymmetrischen Theorien könnte ein ähnlicher Mechanismus auch durch andere Teilchen (Goldstinos) vermittelt werden (siehe Goldstonetheorem, Gravitino und: DELPHI Collaboration: P. Abreu et al.: Search for the sgoldstino at √s from 189 to 202 GeV. In: CERN-EP/2000-110. 16. August 2000 (http://hal.archives-ouvertes.fr/docs/00/01/04/35/PDF/democrite-00006827.pdf).)

Siehe auch

Literatur

  • Max Jammer Das Konzept der Masse in der Physik. Wissenschaftliche Buchgesellschaft, Darmstadt 1964.
  • Gordon Kane: Das Geheimnis der Masse. In: Spektrum der Wissenschaft. Nr. 2, Spektrum der Wissenschaft Verlag, 2006, ISSN 0170-2971, S. 36–43.

Weblinks

 Commons: Mass – Sammlung von Bildern, Videos und Audiodateien

Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Masse — (lat. massa – Klumpen, griech. maza – Brotteig) wird verwendet zur Betonung der Menge oder des Gesamten, von der Form und den Details abstrahierend, insbesondere für Masse (Physik), die Ursache der Gewichtskraft und Maß der Trägheit des Körpers… …   Deutsch Wikipedia

  • Masse-Energie-Beziehung — „Relativitätstheorie“, sechste und letzte Skulptur beim Berliner Walk of Ideas zur FIFA Fußball Weltmeisterschaft in Deutschland 2006 Die Äquivalenz von Masse und Energie ist die Erkenntnis der relativistischen Physik, dass die Energie ERuhe… …   Deutsch Wikipedia

  • Masse-Energie-Relation — „Relativitätstheorie“, sechste und letzte Skulptur beim Berliner Walk of Ideas zur FIFA Fußball Weltmeisterschaft in Deutschland 2006 Die Äquivalenz von Masse und Energie ist die Erkenntnis der relativistischen Physik, dass die Energie ERuhe… …   Deutsch Wikipedia

  • Masse-Energie-Äquivalenz — „Relativitätstheorie“, sechste und letzte Skulptur beim Berliner Walk of Ideas zur FIFA Fußball Weltmeisterschaft in Deutschland 2006 Die Äquivalenz von Masse und Energie ist die Erkenntnis der relativistischen Physik, dass die Energie ERuhe… …   Deutsch Wikipedia

  • Masse und Energie — „Relativitätstheorie“, sechste und letzte Skulptur beim Berliner Walk of Ideas zur FIFA Fußball Weltmeisterschaft in Deutschland 2006 Die Äquivalenz von Masse und Energie ist die Erkenntnis der relativistischen Physik, dass die Energie ERuhe… …   Deutsch Wikipedia

  • Masse-Leuchtkraft-Relation — Eine Masse Leuchtkraft Beziehung stellt einen Zusammenhang zwischen der Masse eines Objektes beispielsweise eines Sterns und seiner Leuchtkraft dar. Hauptreihensterne Für Hauptreihensterne ist die Masse Leuchtkraft Beziehung gut bekannt. Zum… …   Deutsch Wikipedia

  • Masse [1] — Masse eines Körpers, nach gewöhnlichem Sprachgebrauch die Quantität Materie (Stoff), die in dem Körper enthalten ist. Zu ihrer Bestimmung dient die Trägheit oder der Beschleunigungswiderstand des Körpers. Läßt man einen Körper z. B. auf… …   Meyers Großes Konversations-Lexikon

  • Masse — Schwarm; Unzahl; Menge; Vielzahl; Heer; Flut (umgangssprachlich); Menschenmenge; Pulk; Menschenmasse; Meute; Auflauf; …   Universal-Lexikon

  • Physik — Die Physik (von griechisch φυσική physikē‚ wissenschaftliche Erforschung der Naturerscheinungen, Naturforschung‘, lateinisch physica ‚Naturlehre‘)[1][2] untersucht die grundlegenden Phänomene in der Natur in der Absicht, deren Eigenschaften und… …   Deutsch Wikipedia

  • Physik kondensierter Materie — Kondensierte Materie bezeichnet in den Naturwissenschaften Materie in gebundenem Zustand, im Gegensatz zum gasförmigen Zustand. Erste Brillouin Zone eines FCC Gitters Die Physik der kondensierten Materie unterscheidet sich aufgrund der… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”