Nichtlineares System


Nichtlineares System

Nichtlineare Systeme (NL-Systeme) sind Systeme der Systemtheorie, welche auf Eingangssignale (Systemreize) nicht in jedem Bereich proportional antworten. Sie sind wesentlich komplexer als lineare Systeme.

Inhaltsverzeichnis

Allgemeine Grundlagen

Für nichtlineare Systeme gilt, im Gegensatz zu linearen Systemen, das Superpositionsprinzip nicht. Das heißt, man kann nicht von mehreren bekannten Systemreiz-Systemantwort-Paaren auf eine unbekannte Systemantwort zu gegebenem Systemreiz schließen. Ferner unterscheidet man die Nichtlinearität eines Systems in statische, dynamische, einwertige und mehrwertige Nichtlinearität. Da es zu nichtlinearen Systemen keine geschlossene mathematische Theorie gibt, gibt es auch keine allgemeine Methode zur Analyse unbekannter nichtlinearer Systeme.[1]

Allgemein kann man ein mathematisches Modell eines nichtlinearen Systems mit innerem Zustand x(t), äußeren Einflüssen u(t) und Beobachtungen y(t) darstellen als

\begin{align}
  \dot x(t) &=A\bigl(t,x(t),u(t)\bigr)\\
  y(t)      &=C\bigl(t,x(t),u(t)\bigr),
\end{align}

wobei A und C die das System beschreibenden, nichtlinearen Funktionen sind.

Statische nichtlineare Systeme

Veranschaulichung einer linearen (linkes Diagramm) gegenüber einer nichtlinearen (rechtes Diagramm) Kennlinie. Die gestrichelte Diagonale veranschaulicht die lineare bzw. nichtlineare Transformation, die schwarze Kurve ist das Eingangs-, die blaue das Ausgangssignal.

Unter statischen nichtlinearen Systemen versteht man solche, die ohne Zeitverzögerung auf einen Systemreiz reagieren. Zum Beispiel wird die Diode im Allgemeinen (Ausnahme etwa bei schnellen Schaltvorgängen) als statisches Bauteil angesehen. Ihre Spannungs-Strom-Kennlinie folgt einer Exponentialfunktion; sie wird in verschiedenen Anwendungen idealisiert als stückweise linear behandelt, bleibt aber im systemtheoretischen Sinne nichtlinear. Statische Systeme können durch eine statische Kennlinie beschrieben werden, wie sie in den Abbildungen gezeigt werden.

Kennlinie eines Feldeffekttransistors
Oben (so etwa bei > 3 mA) fast linear: Ein sinusförmiger Verlauf einer Änderung ΔUGS erzeugt eine Änderung ΔID ohne sichtbare Abweichung vom Sinusverlauf.
Unten (so etwa bei < 3 mA) nicht linear: Ein sinusförmiger Verlauf einer Änderung ΔUGS erzeugt eine Änderung ΔID mit erkennbar nicht sinusförmigem Verlauf.

Dynamische nichtlineare Systeme

Hauptartikel: Dynamisches System

Unter dynamischen nichtlinearen Systemen versteht man solche, die auch Speicherelemente und damit ein „Gedächtnis“ besitzen. Dadurch wird die Systemantwort nicht vom augenblicklichen Wert des Systemreizes allein bestimmt. Sie hängt auch von der Vorgeschichte, also von der Stärke der vorangehenden Erregung ab.[2]

Charakterisierung nichtlinearer Systeme bezüglich ihres Frequenzverhaltens

Bei Erregung linearer Systeme mit einem Sinus-Signal erhält man am Ausgang wiederum ein sinusförmiges Signal derselben Frequenz, jedoch mit veränderter Phasenlage und Amplitude. Diese Eigenschaft weisen nichtlineare Systeme im Allgemeinen nicht auf. Nichtlineare Systeme können an ihrem Systemausgang Frequenzanteile aufweisen, welche im Eingangssignal nicht enthalten sind (Verzerrung).

Beispiele aus der Elektrotechnik sind:

  • Wenn ein nichtlinearer Verstärker mit einer einzigen Sinusspannung als Eingangsspannung gespeist wird, erzeugt er am Ausgang neben einer Sinusspannung zusätzlich Harmonische. Deren Anteile werden mit zunehmender Übersteuerung größer.
  • Wenn der Verstärker mit einer Überlagerung zweier oder mehrerer Sinusspannungen unterschiedlicher Frequenz gespeist wird, tritt zusätzlich Intermodulation auf, und es entstehen Kombinationsfrequenzen.
  • Sollen mehrere modulierte Wechselspannungen gleichzeitig verstärkt werden, kann es zu Kreuzmodulation kommen. Dann übernimmt eine Wechselspannung teilweise die Modulation der anderen (Luxemburgeffekt).

Siehe auch

Literatur

  • Mathukumalli Vidyasagar: Nonlinear systems analysis SIAMm Philadelphia 2008, ISBN 978-0-89871-526-2.
  • Muthuswamy Lakshmanan, et al.: Nonlinear dynamics - integrability, chaos, and patterns. Springer, Berlin 2003, ISBN 3-540-43908-0.

Einzelnachweise

  1. Holk Cruse: Biologische Kybernetik. Verlag Chemie GmbH, Weinheim 1981, ISBN 3-527-25911-2.
  2. Dezsö Varjú: Systemtheorie. Springer-Verlag, Berlin/Heidelberg 1977, ISBN 3-540-08086-4.

Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • nichtlineares System — netiesinė sistema statusas T sritis automatika atitikmenys: angl. non linear system vok. nichtlineares System, n rus. нелинейная система, f pranc. système non linéaire, m …   Automatikos terminų žodynas

  • nichtlineares System — netiesinė sistema statusas T sritis fizika atitikmenys: angl. non linear system vok. nichtlineares System, n rus. нелинейная система, f pranc. système non linéaire, m …   Fizikos terminų žodynas

  • System (Philososphie) — Dieser Artikel bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung. Darstellung verschiedener Systeme …   Deutsch Wikipedia

  • Dynamik (System) — Unter den Systemeigenschaften versteht man einen Satz von Eigenschaften, die für ein System charakteristisch sind. Sie ergeben sich einerseits aus den Eigenschaften der Elemente des Systems und andererseits aus der Systemstruktur, also ihren… …   Deutsch Wikipedia

  • Chaotisches System — Die Chaosforschung (auch: Theorie komplexer Systeme oder Komplexitätstheorie) ist ein Teilgebiet der Mathematik und Physik und befasst sich im Wesentlichen mit Systemen, deren Dynamik unter bestimmten Bedingungen empfindlich von den… …   Deutsch Wikipedia

  • Lineares System (Systemtheorie) — In der Systemtheorie ist ein lineares System ein Modell für einen hinreichend gut isolierten Teil der Natur, in dem alle auftretenden Funktionen lineare Abbildungen sind. Ein lineares System besteht aus inneren Zustandsgrößen und einer Dynamik,… …   Deutsch Wikipedia

  • non-linear system — netiesinė sistema statusas T sritis automatika atitikmenys: angl. non linear system vok. nichtlineares System, n rus. нелинейная система, f pranc. système non linéaire, m …   Automatikos terminų žodynas

  • non-linear system — netiesinė sistema statusas T sritis fizika atitikmenys: angl. non linear system vok. nichtlineares System, n rus. нелинейная система, f pranc. système non linéaire, m …   Fizikos terminų žodynas

  • Systemtheorie (Ingenieurwissenschaften) — Der Begriff der Systemtheorie wird in verschiedenen wissenschaftlichen Disziplinen angewendet und hat in Bezug auf den Primärbegriff System keine einheitliche Bedeutung. Systeme können sich als physikalische, ökologische, ökonomische, soziale… …   Deutsch Wikipedia

  • Regelkreis — Blockschaltbild eines einfachen Standardregelkreises, bestehend aus der Regelstrecke, dem Regler und einer negativen Rückkopplung der Regelgröße y (auch Istwert). Die Regelgröße y wird mit der Führungsgröße (Sollwert) w verglichen. Die… …   Deutsch Wikipedia