Leonhard Euler


Leonhard Euler
Leonhard Euler
Leonhard Euler, Pastell von Emanuel Handmann, 1753 (Kunstmuseum Basel)
Gedenktafel am Haus Behrenstraße 21/22 in Berlin-Mitte
Grab Eulers auf dem Friedhof des Alexander-Nevskij-Klosters in Petersburg
Leonhard Euler auf dem schweizerischen 10-Franken-Schein – Banknotenserie von 1984

Leonhard Euler (* 15. April 1707 in Basel; † 7. Septemberjul./ 18. September 1783greg. in Sankt Petersburg) war einer der bedeutendsten Mathematiker.

Inhaltsverzeichnis

Leben

Euler wurde als ältester Sohn des Pfarrers Paul Euler (1670–1745) und der Margaretha geb. Brucker (1677–1761) in Basel geboren. Er besuchte das dortige Gymnasium am Münsterplatz und nahm gleichzeitig Privatunterricht beim Theologen Johannes Burckhardt, der von der Mathematik begeistert war. Ab 1720 studierte er an der Universität Basel und hörte hier Vorlesungen von Johann Bernoulli. 1723 erlangte er durch einen Vergleich der newtonschen und cartesianischen Philosophie in lateinischer Sprache die Magisterwürde. Seinen Plan, auch Theologie zu studieren, gab er 1725 auf.

Am 17. Mai 1727 berief ihn Daniel Bernoulli an die Universität Sankt Petersburg. Er erbte die Professur des 1726 verstorbenen Nikolaus II. Bernoulli. Hier traf er auf Christian Goldbach, mit dem er jahrzehntelang in Briefwechsel stand. 1730 erhielt Euler die Professur für Physik und trat schließlich 1733 die Nachfolge von Daniel Bernoulli als Professor für Mathematik an. Er bekam in den folgenden Jahren immer stärkere Probleme mit seinem Augenlicht und war ab 1740 rechtsseitig blind.

1741 wurde er von Friedrich dem Großen an die Königlich-Preußische Akademie der Wissenschaften berufen. Euler korrespondierte und verglich seine Theorien weiterhin mit Christian Goldbach. Nach 25 Jahren in Berlin kehrte er 1766 zurück nach St. Petersburg. An seine Tätigkeit und sein damaliges Wohnhaus in Berlin erinnert eine Gedenktafel an der Behrenstraße 22/23, das heutige Haus der Bayerischen Vertretung in Berlin. Im St. Petersburg der Zarin Katharina der Großen wurde ihm an der Kaiserlich-russischen Akademie der Wissenschaften ein ehrenvoller Empfang bereitet. Er arbeitete wie in der ersten Sankt Petersburger Periode in der Kunstkammer und lebte in einem von Katharina der Großen geschenkten Palais mit seinem Sohn Johann Albrecht direkt an der Newa.

1771 erblindete er vollständig. Trotzdem entstand fast die Hälfte seines Lebenswerks in der zweiten Petersburger Zeit. Hilfe erhielt er dabei von seinen Söhnen Johann Albrecht, Karl und Christoph und seinem Sekretär Nikolaus Fuß, der nach seinem Tod als erster eine Würdigung verfasste. Trotz seiner wissenschaftlichen Produktivität wurde er nie Präsident der Universität, dieses Amt besetzte meist einer der Liebhaber Katharinas, aber sein Einfluss in der Universität war fast dem des Präsidenten ebenbürtig. 1783 starb Euler an einer Hirnblutung und wurde neben seiner Frau auf dem lutherischen Smolensker-Friedhof auf der Wassiljewski-Insel in Sankt Petersburg begraben. In der Sowjetzeit wurden seine sterblichen Überreste auf den Lazarus-Friedhof des Alexander-Newski-Klosters umgebettet.

Da Euler und Friedrich der Große sich im Streit trennten, befinden sich heute neben den originalen Dokumenten aus der ersten und der zweiten Petersburger Periode auch die Dokumente aus der Berliner Zeit im Archiv in Sankt Petersburg.

Leistungen

Euler war extrem produktiv: Insgesamt gibt es 866 Publikationen von ihm. Ein großer Teil der heutigen mathematischen Symbolik geht auf Euler zurück (z. B. e, π, i, Summenzeichen ∑, f(x) als Darstellung für eine Funktion). 1744 gab er ein Lehrbuch der Variationsrechnung heraus. Euler kann auch als der eigentliche Begründer der Analysis angesehen werden. 1748 publizierte er das Grundlagenwerk Introductio in analysin infinitorum, in dem zum ersten Mal der Begriff der Funktion die zentrale Rolle spielt. Am 3. September 1750 las Leonhard Euler vor der Berliner Akademie der Wissenschaften ein Mémoire, in dem er erneut das von Isaac Newton deklarierte Prinzip Kraft gleich Masse mal Beschleunigung vorstellte.

In den Werken Institutiones calculi differentialis (1765) und Institutiones calculi integralis (1768–1770) beschäftigte er sich außer mit der Differential- und Integralrechnung unter anderem mit Differenzengleichungen, elliptischen Integralen sowie auch mit der Theorie der Gamma- und Betafunktion. Andere Arbeiten setzen sich mit Zahlentheorie, Algebra (z. B. Vollständige Anleitung zur Algebra, 1770), angewandter Mathematik (z. B. Mechanica, sive motus scientia analytica exposita, 1736 und Theoria motus corporum solidorum seu rigidorum, 1765) und sogar mit der Anwendung mathematischer Methoden in den Sozial- und Wirtschaftswissenschaften auseinander (z. B. Rentenrechnung, Lotterien, Lebenserwartung).

In der Mechanik arbeitete er auf den Gebieten der Hydrodynamik (Eulersche Bewegungsgleichung, Turbinengleichung) und der Kreiseltheorie (Eulersche Kreiselgleichungen). Die erste analytische Beschreibung der Knickung eines mit einer Druckkraft belasteten Stabes geht auf Euler zurück; er begründete damit die Stabilitätstheorie. In der Optik veröffentlichte er Werke zur Wellentheorie des Lichts und zur Berechnung von optischen Linsen zur Vermeidung von Farbfehlern.

Seine 1736 veröffentlichte Arbeit Solutio problematis ad geometriam situs pertinentis beschäftigt sich mit dem Königsberger Brückenproblem und gilt als eine der ersten Arbeiten auf dem Gebiet der Graphentheorie.

Über seinen wenig rezipierten Beitrag zur mathematischen Musiktheorie (Tentamen novae theoriae musicae, 1739) bemerkte ein Biograph: „für die Musiker zu anspruchsvolle Mathematik, für die Mathematiker zu musikalisch.“

1745 übersetzte Leonhard Euler das Werk des Engländers Benjamin Robins „New principles of gunnery“ ins Deutsche. Es erschien im selben Jahre in Berlin unter dem Titel „Neue Grundsätze der Artillerie – enthaltend die Bestimmungen der Gewalt des Pulvers nebst einer Untersuchung über den Unterschied des Widerstands der Luft in schnellen und langsamen Bewegungen aus dem Englischen des Herrn Benjamin Robins übersetzt und mit den nötigen Erläuterungen und vielen Anmerkungen versehen“. Das Buch beschäftigt sich mit der sogenannten inneren Ballistik und – als Hauptthema – mit der äußeren Ballistik.
Seit Galilei hatten die Artilleristen die Flugbahn der Geschosse als Parabeln angesehen, indem sie den Luftwiderstand wegen der „Dünnheit“ der Luft glaubten vernachlässigen zu dürfen. Robins hat als einer der ersten wertvolle Experimente ausgeführt und gezeigt, dass dem nicht so ist; dass im Gegenteil die Flugbahn durch den Einfluss des Luftwiderstandes wesentlich abgeändert werde. Somit wurde dank Robins und Eulers Mithilfe „das erste Lehrbuch der Ballistik“ geschaffen. Da solch ein Lehrbuch einer Armee einen Vorteil verschaffte, wurde es 1777 wieder ins Englische und 1783 ins Französische übersetzt. In Frankreich wurde es sogar als offizielles Lehrbuch in den Militärschulen eingeführt, sodass sogar Napoléon Bonaparte es (als Leutnant) studieren musste.

Besondere Bedeutung in der breiten Öffentlichkeit erlangte seine populärwissenschaftliche Schrift Lettres à une princesse d’Allemagne von 1768, in der er in Form von Briefen an die Prinzessin Friederike Charlotte von Brandenburg-Schwedt, eine Nichte Friedrichs des Großen, die Grundzüge der Physik, der Astronomie, der Mathematik, der Philosophie und der Theologie vermittelt. Weniger bekannt sind seine Arbeiten zum Stabilitätskriterium von Schiffen, in denen er das bereits erworbene, aber wieder verloren gegangene Wissen von Archimedes erneuert.

Zeitgenossen Eulers waren unter anderen Christian Goldbach, Jean Baptiste le Rond d’Alembert, Alexis-Claude Clairaut, Johann Heinrich Lambert und einige Mitglieder der Familie Bernoulli.

Der deutsche Mathematiker Ferdinand Rudio (1856–1929) initiierte die Herausgabe von Eulers sämtlichen Werken. Zu Lebzeiten Rudios wurden mehr als 30 Bände publiziert. Bis heute wurden über 70 Bände herausgegeben.

Schriften

DDR-Briefmarke anlässlich des 200. Todestages Eulers (1983)
Sowjetische Briefmarke anlässlich des 250. Geburtstages Eulers (1957)
Titelblatt der Methodus inveniendi lineas curvas von 1744

Der schwedische Mathematiker Gustaf Eneström hat ein chronologisches Verzeichnis der Publikationen Eulers erstellt. Eulers Schriften werden üblicherweise durch ihre Eneström-Nummer (E001–E866) referenziert.

Im Text erwähnte Publikationen:

  • Mechanica sive motus scientia analytice exposita (1736, 2 Bände, E015, E016)
  • Tentamen novae theoriae musicae (1739, E033)
  • Solutio problematis ad geometriam situs pertinentis (1741, E053)
  • Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti (1744, E065)
  • Introductio in analysin infinitorum (1748, 2 Bände, E101, E102)
  • Découverte d’un nouveau principe de Mécanique, Mem. Acad. Roy. Sci. Berlin vol. 6, 1750 (1752), pp. 185–217.
  • Institutiones calculi differentialis (1755, 2 Bände, E212)
  • Theoria motus corporum solidorum seu rigidorum (1765, E289)
  • Lettres à une princesse d'Allemagne (1768, 3 Bände, E343, E344, E417)
  • Institutiones calculi integralis (1768–1770, 3 Bände, E342, E366, E385)
  • Vollständige Anleitung zur Algebra (1770, 2 Bände, E387, E388)

Nach Euler Benanntes

Weiterhin sind zu seinen Ehren ein Mondkrater (der Krater Euler) und der Asteroid Euler (2002) benannt. Auch ein Programm für numerische und symbolische Berechnungen trägt seinen Namen.

Siehe auch

Sonstiges

Von ca. 1976 bis 1995 war Leonhard Euler auf der Schweizer 10-Franken-Note abgebildet. Zum 300. Geburtstag hat die Schweizerische Post 2007 eine Sondermarke herausgegeben.

Literatur

Weblinks

 Wikisource: Leonhardus Eulerus – Quellen und Volltexte (Latein)
 Commons: Leonhard Euler – Album mit Bildern und/oder Videos und Audiodateien

Über Euler

Von Euler


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Leonhard Euler — nació el 15 de abril de 1707 en Basilea, Suiza. Murió el 18 de septiembre de 1783 en San Petersburgo, Rusia. Vivió en Rusia la mayor parte de su vida. Probablemente uno de los más grandes matemáticos de la historia, comparable a Gauss, Newton o …   Enciclopedia Universal

  • Leonhard Euler — « Euler » redirige ici. Pour les autres significations, voir Euler (homonymie). Leonhard Euler Portrait par Johann Georg Brucker Naissance …   Wikipédia en Français

  • Leonhard Euler — Infobox Scientist name = Leonhard Euler|box width = 300px |200px image width = 200px caption = Portrait by Johann Georg Brucker birth date = birth date|df=yes|1707|4|15 birth place = Basel, Switzerland death date = 18 September (O.S 7 September)… …   Wikipedia

  • Leonhard Euler — Retrato de Leonhard Euler, pintado por Johann Georg Bruck …   Wikipedia Español

  • Leonhard Euler — noun Swiss mathematician (1707 1783) • Syn: ↑Euler • Instance Hypernyms: ↑mathematician …   Useful english dictionary

  • Leonhard Euler — …   Википедия

  • Leonhard Euler — n. (1707 1783) Swiss mathematician …   English contemporary dictionary

  • Contributions of Leonhard Euler to mathematics — The 18th century Swiss mathematician Leonhard Euler (1707–1783) is among the most prolific and successful mathematicians in the history of the field. His seminal work had a profound impact in numerous areas of mathematics and he is widely… …   Wikipedia

  • Liste des sujets nommés d'après Leonhard Euler — En mathématiques et en physique, il existe un grand nombre de sujets nommés en l honneur de Leonhard Euler, dont beaucoup sont désignés par leur rôle : équation, formule, identité, nombre (unique ou séquence) ou une autre entité… …   Wikipédia en Français

  • List of topics named after Leonhard Euler — In mathematics and physics, there are a large number of topics named in honour of Leonhard Euler (pronounced Oiler ). As well, many of these topics include their own unique function, equation, formula, identity, number (single or sequence), or… …   Wikipedia