Areatangens Hyperbolicus und Areakotangens Hyperbolicus

Areatangens Hyperbolicus und Areakotangens Hyperbolicus sind die Umkehrfunktionen von Tangens Hyperbolicus und Kotangens Hyperbolicus und damit Area-Funktionen.

Schreibweisen:

y = \operatorname{artanh}(x) = \tanh^{-1}(x)
y = \operatorname{arcoth}(x) = \coth^{-1}(x)

Letztere wird seltener benutzt, um die Verwechselung mit dem Kehrwert des hyperbolischen (Ko)Tangens zu vermeiden. Es ist \operatorname{artanh}(x)=\tanh^{-1}(x)\not= \tanh(x)^{-1}=\tfrac1{\tanh(x)}.

Inhaltsverzeichnis

Definitionen

Areatangens Hyperbolicus:

\operatorname{artanh}(x) := \frac{1}{2} \ln\left(\frac{1 + x}{1 - x}\right)\quad \mathrm{f\ddot{u} r} \quad |x| < 1

Areakotangens Hyperbolicus:

\operatorname{arcoth}(x) := \frac{1}{2} \ln\left(\frac{x + 1}{x - 1}\right)\quad \mathrm{f\ddot{u} r} \quad |x| > 1

Geometrische Definitionen

Geometrisch lässt sich der Areatangens Hyperbolicus durch die Fläche in der Ebene darstellen, welche die Verbindungsstrecke zwischen dem Koordinatenursprung (x,y) = (0,0) und der Hyperbel x2y2 = 1 überstreicht: Es seien (x, -y) = \left(x, -\sqrt{x^2-1} \right) und (x, y) = \left(x, +\sqrt{x^2-1} \right) Start- und Endpunkt auf der Hyperbel, dann wird von der Verbindungsstrecke die Fläche A = \operatorname{artanh} \left(\frac{y}{x}\right) überstrichen.

Spezielle Werte

\begin{alignat}{2}\operatorname{artanh} (0)&=0 &\quad \operatorname{arcoth} (0)&= \tfrac12\pi\mathrm i \\ \operatorname{artanh} (\mathrm i)&=\tfrac14\pi\mathrm i &\quad \operatorname{arcoth}(i)&=-\tfrac14\pi\mathrm i\end{alignat}

Eigenschaften

Graph der Funktion artanh(x)
Graph der Funktion arcoth(x)
  Areatangens Hyperbolicus Areakotangens Hyperbolicus
Definitionsbereich − 1 < x < 1  -\infty < x < -1
 1 < x < \infty
Wertebereich  -\infty < f(x) < \infty  -\infty < f(x) < \infty \; ; \; x \ne 0
Periodizität keine keine
Monotonie streng monoton steigend streng monoton fallend
Symmetrien ungerade Funktion:
 \operatorname{artanh}(-x) = - \operatorname{artanh}(x)
ungerade Funktion:
 \operatorname{arcoth}(-x) = - \operatorname{arcoth}(x)
Asymptote  f(x)\to \infty für  x \to 1  f(x)\to 0 für  x \to \pm \infty
Nullstellen x = 0 keine
Sprungstellen keine keine
Polstellen  x = \pm 1  x = \pm 1
Extrema keine keine
Wendepunkte x = 0 keine

Reihenentwicklungen

Taylor- und Laurent-Reihen der beiden Funktionen sind


\begin{alignat}{2} 
\operatorname{artanh}(x) &= \sum_{k=0}^\infty \frac{x^{2k+1}}{(2k+1)} & = x + \frac13 x^3 + \frac15 x^5+\frac17x^7+\ldots & {}
\\ \operatorname{arcoth}(x) &= \sum_{k=1}^\infty \frac{x^{-2k+1}}{2k-1} & = x^{-1}+\frac13x^{-3}+\frac15x^{-5}+\frac17x^{-7}+\ldots & {}
\\ &= \sum_{k=0}^{\infty} \frac{1}{(2k+1) \cdot x^{2k+1}} & = \frac{1}{x} + \frac{1}{3x^3} + \frac{1}{5x^5} + \frac{1}{7x^7} + \ldots & {} \end{alignat}

Ableitungen

\frac{\mathrm{d}}{\mathrm{d}x} \operatorname{artanh}(x)= \frac{1}{1-x^2} \, ; \quad |x| < 1 .
 \frac{\mathrm{d}}{\mathrm{d}x} \operatorname{arcoth}(x)= \frac{1}{1-x^2} \, ; \quad |x| > 1 .

Integrale

Die Stammfunktionen lauten:

\int \operatorname{artanh}(x)\, \mathrm{d}x = x\cdot \operatorname{artanh}(x) + \frac12\ln\left(1 - x^2\right).
\int \operatorname{arcoth}(x)\, \mathrm{d}x = x\cdot \operatorname{arcoth}(x) + \frac12\ln\left(x^2 - 1\right)

Additionstheorem

 \operatorname{artanh}(x)\ \pm \operatorname{artanh}(y)\ = \operatorname{artanh} \left( \frac{x \pm y}{1 \pm xy}\ \right)

Siehe auch

Weblinks


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Tangens Hyperbolicus und Kotangens Hyperbolicus — Graph des Tangens Hyperbolicus Graph des Kotangens Hyperbol …   Deutsch Wikipedia

  • Sinus Hyperbolicus und Kosinus Hyperbolicus — Eine Gerade durch den Nullpunkt schneidet die Hyperbel x2 − y2 = 1 im Punkt , wobei A für die Fläche zwischen der Geraden, ihrem Spiegelbild bezogen auf die x Achse und der Hyperbel steht. (Siehe …   Deutsch Wikipedia

  • Areasekans Hyperbolicus und Areakosekans Hyperbolicus — gehören zu den Areafunktionen. Sie sind die Umkehrfunktionen zu Sekans Hyperbolicus bzw. Kosekans Hyperbolicus. Als Funktionen werden sie oder seltener bzw. und seltener geschrieben …   Deutsch Wikipedia

  • Areasinus Hyperbolicus und Areakosinus Hyperbolicus — Areasinus Hyperbolicus (abgekürzt , , ; seltener auch ) und Areakosinus Hyperbolicus (abgekürzt , , ; seltener auch …   Deutsch Wikipedia

  • Sekans Hyperbolicus und Kosekans Hyperbolicus — Sekans Hyperbolicus (blau) und Kosekans Hyperbolicus (rot) Die Funktionen Kosekans Hyperbolicus (csch) und Sekans Hyperbolicus (sech) sind Hyperbelfunktionen. Sie ergeben sich als Kehrwert von Sinus Hyperbolicus bzw. Kosinus Hyperbolicus.… …   Deutsch Wikipedia

  • Areakotangens Hyperbolicus — Areatangens Hyperbolicus und Areakotangens Hyperbolicus sind die Umkehrfunktionen von Tangens Hyperbolicus und Kotangens Hyperbolicus und damit Area Funktionen. Schreibweisen: Letztere wird seltener benutzt, um die Verwechselung mit dem Kehrwert… …   Deutsch Wikipedia

  • Areatangens Hyperbolicus — und Areakotangens Hyperbolicus sind die Umkehrfunktionen von Tangens Hyperbolicus und Kotangens Hyperbolicus und damit Area Funktionen. Schreibweisen: Letztere wird seltener benutzt, um die Verwechselung mit dem Kehrwert des hyperbolischen… …   Deutsch Wikipedia

  • Hyperbolicus — Der Terminus Hyperbolicus bezeichnet: Sinus Hyperbolicus und Kosinus Hyperbolicus Areasinus Hyperbolicus und Areakosinus Hyperbolicus Tangens Hyperbolicus und Kotangens Hyperbolicus Areatangens Hyperbolicus und Areakotangens Hyperbolicus Sekans… …   Deutsch Wikipedia

  • Arkussinus und Arkuskosinus — Der Arkussinus geschrieben arcsin, asin, und Arkuskosinus geschrieben arccos, acos,sind die Umkehrfunktionen der eingeschränkten Sinus und Kosinusfunktion: Da Sinus und Kosinus periodische Funktionen sind, muss dabei zu ihrer Umkehrung der… …   Deutsch Wikipedia

  • Sekans und Kosekans — Definitionen am Einheitskreis Sekans und Kosekans sind trigonometrische Funktionen. Der Sekans wird mit sec(x) bezeichnet, der Kosekans mit csc(x). Die Funktionen haben ihren Namen durch die Definition im Einheitskreis. Die Funktionswerte… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”