Sekans und Kosekans
Definitionen am Einheitskreis

Sekans und Kosekans sind trigonometrische Funktionen. Der Sekans wird mit sec(x) bezeichnet, der Kosekans mit csc(x). Die Funktionen haben ihren Namen durch die Definition im Einheitskreis. Die Funktionswerte entsprechen der Länge von Sekantenabschnitten:

\overline{OT} = \operatorname{sec}(b) \qquad\qquad \overline{OK} = \operatorname{csc}(b)
Ein rechtwinkliges Dreieck

Im rechtwinkligen Dreieck ist der Sekans das Verhältnis der Hypotenuse zur Ankathete und damit die Kehrwertfunktion der Kosinusfunktion.

Der Kosekans ist das Verhältnis der Hypotenuse zur Gegenkathete und damit die Kehrwertfunktion der Sinusfunktion:

 \sec (\alpha) = \frac{l_{\rm Hy}}{l_{\rm AK}} = \frac{c}{b} \qquad
\qquad  \csc (\alpha) = \frac{l_{\rm Hy}}{l_{\rm GK}} = \frac{c}{a}
\operatorname{sec}(x)=\frac{1}{\cos(x)} \qquad\qquad \csc(x)=\frac{1}{\sin(x)}

Inhaltsverzeichnis

Eigenschaften

Graphen

Graph der Sekansfunktion
Graph der Kosekansfunktion

Definitionsbereich

Sekans:    -\infty < x < +\infty \quad ; \quad x \ne \left(n + \frac{1}{2}\right)\cdot\pi\,; \,n\in\mathbb{Z}
Kosekans:    -\infty < x < +\infty \quad ; \quad x \ne n \cdot \pi\ ; \, n \in \mathbb{Z}

Wertebereich

 -\infty < f(x)  \le -1 \quad ; \quad 1 \le f(x) < +\infty

Periodizität

Periodenlänge 2 \cdot \pi \,:\, f(x+2\pi) = f(x)

Symmetrien

Sekans:    Achsensymmetrie: f(x) = f( − x)
Kosekans:    Punktsymmetrie: f( − x) = − f(x)

Polstellen

Sekans:    x = \left(n + \frac{1}{2}\right)\cdot\pi\,;\,n\in\mathbb{Z}
Kosekans:    x = n \cdot \pi\ ;\quad n \in \mathbb{Z}

Extremwerte

Sekans:    Minima:  x = 2n \cdot \pi \,;\, n \in \mathbb{Z} Maxima:  x = (2n - 1) \cdot \pi\ ;\, n \in \mathbb{Z}
Kosekans:    Minima:  x = \left( 2n + \frac{1}{2} \right) \cdot \pi\ ;\, n \in \mathbb{Z} Maxima:  x = \left( 2n - \frac{1}{2} \right) \cdot \pi\ ;\, n \in \mathbb{Z}

Weder die Sekansfunktion noch die Kosekansfunktion haben horizontale Asymptoten, Sprungstellen, Wendepunkte oder Nullstellen.

Umkehrfunktionen

Sekans:

Auf einer halben Periodenlänge, z. B. x \in  [0 , \pi] ist die Funktion umkehrbar (Arkussekans):
x = \operatorname{arcsec}(y)

Kosekans

Auf einer halben Periodenlänge, z. B. x \in  \left[-\frac{\pi}{2} , \frac{\pi}{2} \right] ist die Funktion umkehrbar (Arkuskosekans):
x = \operatorname{arccsc}(y)

Reihenentwicklung

Sekans:

\sec(x) = 4\pi \, \sum_{k=0}^{\infty} \frac{(-1)^k(2k+1)} {(2k+1)^2 \pi^2 - 4 x^2 }

Kosekans:

\csc(x) = \frac{1}{x} - 2x \, \sum_{k=1}^{\infty}\frac{(-1)^k} {k^2\pi^2-x^2} = \sum_{k=-\infty}^\infty \frac{(-1)^k \, x}{x^2-k^2\pi^2}

Ableitung

Sekans:

\frac{\mathrm{d}}{\mathrm{d}x}\operatorname{sec}(x) = \operatorname{sec}(x) \cdot \tan(x) = \frac{\operatorname{sec}^2(x)}{\operatorname{csc}(x)}

Kosekans

\frac{\mathrm{d}}{\mathrm{d}x}\operatorname{csc}(x) =\frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{\sin(x)}=
- \operatorname{csc}(x) \cdot \cot(x) = - \frac{\operatorname{csc}^2(x)}{\operatorname{sec}(x)} =-\frac{\cos(x)}{\sin^2(x)}

Integral

Sekans:

\int\sec(x)\,\mathrm dx=\ln\left|\frac{1+\sin(x)}{\cos(x)}\right|=\ln\Big|\sec(x)+\tan(x)\Big|

Kosekans

\int\csc(x)\,\mathrm dx=\ln\left|\frac{\sin(x)}{1+\cos(x)}\right|=\ln\left|\tan \left(\frac{x}{2} \right)\right|

Komplexes Argument

\sec(x + \mathrm{i} \!\cdot\! y) = \frac{2\cos(x)\cosh(y)}{\cos(2x) + \cosh(2y)} + \mathrm{i} \; \frac{2\sin(x)\sinh(y)}{\cos(2x) + \cosh(2y)}
  mit  x,y \in \mathbb{R}


\csc(x + \mathrm{i} \!\cdot\! y) = \frac{-2\sin(x)\cosh(y)}{\cos(2x) - \cosh(2y)} + \mathrm{i} \; \frac{2\cos(x)\sinh(y)}{\cos(2x) - \cosh(2y)}
  mit  x,y \in \mathbb{R}

Siehe auch

Weblinks


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Sekans Hyperbolicus und Kosekans Hyperbolicus — Sekans Hyperbolicus (blau) und Kosekans Hyperbolicus (rot) Die Funktionen Kosekans Hyperbolicus (csch) und Sekans Hyperbolicus (sech) sind Hyperbelfunktionen. Sie ergeben sich als Kehrwert von Sinus Hyperbolicus bzw. Kosinus Hyperbolicus.… …   Deutsch Wikipedia

  • Kosekans Hyperbolicus — Sekans Hyperbolicus (blau) und Kosekans Hyperbolicus (rot) Die Funktionen Sekans Hyperbolicus ( ) und Kosekans Hyperbolicus ( ) sind Hyperbelfunktionen. Inhaltsverzeichnis 1 Definitionen 2 …   Deutsch Wikipedia

  • Sekans Hyperbolicus — (blau) und Kosekans Hyperbolicus (rot) Die Funktionen Sekans Hyperbolicus ( ) und Kosekans Hyperbolicus ( ) sind Hyperbelfunktionen. Inhaltsverzeichnis 1 Definitionen 2 …   Deutsch Wikipedia

  • Kosekans — Definitionen am Einheitskreis Sekans und Kosekans sind trigonometrische Funktionen. Der Sekans wird mit sec(x) bezeichnet, der Kosekans mit csc(x). Die Funktionen haben ihren Namen durch die Definition im Einheitskreis. Die Funktionswerte… …   Deutsch Wikipedia

  • Sekans — Definitionen am Einheitskreis Sekans und Kosekans sind trigonometrische Funktionen. Der Sekans wird mit sec(x) bezeichnet, der Kosekans mit csc(x). Die Funktionen haben ihren Namen durch die Definition im Einheitskreis. Die Funktionswerte… …   Deutsch Wikipedia

  • Kosekans — Ko|se|kans 〈m.; , ; Abk.: cosec; Geom.〉 eine Winkelfunktion, Kehrwert des Sinus eines Winkels [verkürzt <nlat. complementi secans „Sekans, Sekante des Ergänzungswinkels“; → Sekante] * * * Ko|se|kans, der; , , auch: …nten [gek. aus nlat.… …   Universal-Lexikon

  • Arkus-Kosekans — Arkussekans und Arkuskosekans sind trigonometrische Funktionen. Sie sind die Umkehrfunktionen der Sekansfunktion bzw. der Kosekansfunktion und damit Arkusfunktionen. Da die Sekans und die Kosekansfunktion periodisch sind, wird zur Umkehrung der… …   Deutsch Wikipedia

  • Arkus Kosekans — Arkussekans und Arkuskosekans sind trigonometrische Funktionen. Sie sind die Umkehrfunktionen der Sekansfunktion bzw. der Kosekansfunktion und damit Arkusfunktionen. Da die Sekans und die Kosekansfunktion periodisch sind, wird zur Umkehrung der… …   Deutsch Wikipedia

  • Area-Kosekans Hyperbolicus — Areasekans Hyperbolicus und Areakosekans Hyperbolicus gehören zu den Areafunktionen. Sie sind die Umkehrfunktionen zu Sekans Hyperbolicus bzw. Kosekans Hyperbolicus. Als Funktionen werden sie oder seltener bzw. und seltener ges …   Deutsch Wikipedia

  • Arkus-Sekans — Arkussekans und Arkuskosekans sind trigonometrische Funktionen. Sie sind die Umkehrfunktionen der Sekansfunktion bzw. der Kosekansfunktion und damit Arkusfunktionen. Da die Sekans und die Kosekansfunktion periodisch sind, wird zur Umkehrung der… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”