Aromaten
Wichtigster Aromat: Benzol
Benzene Structural Formulae V.3.svg
Benzol mit sechs Elektronen (genauer sechs π-Elektronen) in delokalisierten Doppelbindungen, einer der einfachsten aromatischen Verbindungen, hier durch mesomere Grenzstrukturen dargestellt. (Hinweis: Die Präsentationen oben und unten sind gleichwertig.)
Benzene Structural Formulae V.4.svg
Die delokalisierten Elektronen und die Gleichheit der Bindungen wird in beiden Zeichnungen des Benzolmoleküls durch den Ring dargestellt. (Die rechts wiedergegebene Präsentation findet man bisweilen in Schulbüchern.)
Historic Benzene Formulae Kekulé (original).png
Historische Kekulé-Benzol-Formel aus der Originalpublikation.[1]

Aromatische Verbindungen, kurz auch Aromaten sind eine Stoffklasse in der organischen Chemie. Ihr Name stammt vom aromatischen Geruch der zuerst entdeckten Verbindungen dieser Stoffklasse.

Aromatische Moleküle besitzen mindestens ein Ringsystem, das nach der Hückel-Regel in konjugierten Doppelbindungen, freien Elektronenpaaren oder unbesetzten p-Orbitalen eine Anzahl von 4n+2 (n=0,1,2,…) delokalisierten Elektronen enthält. Diese Delokalisierung führt zu einem besonderen Bindungssystem, in dem im Ring nicht zwischen Einzel- und Doppelbindungen unterschieden werden kann. In einfachen, symmetrischen Ringsystemen wie beim Benzol sind damit alle Bindungen identisch. In Strukturformeln werden hilfsweise entweder die mehreren mesomeren Grenzstrukturen dargestellt oder die Einfachbindungen werden mit einem (manchmal gestrichelten) Ring versehen, der die delokalisierten Elektronen symbolisiert. Aromaten sind im Vergleich zu nicht-aromatischen Doppelbindungssystemen energieärmer und deshalb weniger reaktiv. Insbesondere neigen sie nicht zu Additionsreaktionen.

Inhaltsverzeichnis

Aromatizitätskriterien

Historische Definitionen

  • Benzol ist die einfachste aromatische Verbindung, mit dem alle anderen Aromaten durch die Struktur verwandt sind. Sie besitzen oft angenehmen, aromatischen Geruch. Von diesem typischen Geruch leitet sich die Bezeichnung Aromat, aus gr. ‚aroma‘=‚Duft‘, ab.

Allerdings lassen sich die Aromaten nicht über den Geruch definieren, da bei hoher molarer Masse oder stark polaren Substituenten oft kein Geruch wahrnehmbar ist.

  • Aromaten sind mehrfach ungesättigte Verbindungen, die gegenüber der Addition an der Doppelbindung relativ reaktionsträge sind und die stattdessen relativ leicht direkt an einer Doppelbindung eine Substitution eingehen.

Diese Namensbestimmung, die eine experimentelle Unterscheidung erlaubt, war beispielsweise im 20. Jahrhundert gültig, schon bevor die Struktur- und Bindungsverhältnisse geklärt waren. Heute wird in der Regel eine allgemeinere Definition über die elektronische Struktur bevorzugt. Die angegebenen Eigenschaften – kurz: Substitution statt Addition – sind natürlich dennoch charakteristische und sehr wichtige Merkmale.

  • Das Bindungssystem der Aromaten zeigt eine besondere Stabilität, die zum Beispiel durch den Vergleich der Hydrierungsenthalpie als Resonanzenergie bestimmt werden kann.
  • Die Resonanzfrequenz der Wasserstoffatome im Kernresonanzexperiment ist charakteristisch. Diese äußert sich in einer starken Tieffeldverschiebung für Protonen außerhalb des aromatischen Systems und einer Hochfeldverschiebung für Protonen innerhalb des aromatischen Systems.

Definition der Aromaten

Notwendige, aber nicht hinreichende Voraussetzungen für einen Aromaten:

Gleichbedeutend und kürzer lautet diese Bedingung:

Ein Aromat liegt dann vor, wenn auch die folgenden Bedingungen erfüllt sind:

  • Das Doppelbindungssystem ist planar; in Ausnahmefällen sind leichte Abweichungen von der Ebene gestattet. Zum Beispiel ist in einigen Cyclophanen die Benzoleinheit in einem Winkel von bis zu 30° bootförmig deformiert.
  • Die Zahl der delokalisierten Elektronen muss der Hückel-Regel genügen, das heißt im konjugierten Elektronensystem müssen 2 oder 6 oder 10 oder 14... Elektronen vorliegen:

Die von Erich Hückel aufgestellte Hückel-Regel wird meist durch die Formel (4n + 2) π-Elektronen (n = 0,1,2,3...), delokalisiert über alle Ringatome des Systems, wiedergegeben. Cyclisch konjugierte π-Systeme mit 4n π-Elektronen (n = 1,2,3...) heißen Antiaromaten.

Die Grundstruktur vieler aromatischer Verbindungen ist das Benzol C6H6. (Die Hückel-Regel ist hier mit n=1 erfüllt: Benzol besitzt 6 π-Elektronen.) Das Benzol wird daher als einer der einfachsten aromatischen Kohlenwasserstoffe angesehen – insbesondere da die besonderen Eigenschaften aromatischer Verbindungen am Benzol und dessen Derivaten entdeckt wurden. Benzol ist gegenüber einem hypothetischen (das heißt nicht herstellbaren) Cyclohexatrien mit lokalisierten Doppelbindungen stabiler und damit weniger reaktiv.

Aromatische Ionen

Struktur der Metallocene: jeweils über und unter dem Metallion ist ein Cyclopentadienyl-Anion lokalisiert.

Da laut Hückel-Regel auch ein planares, cyclisch konjugiertes System mit 2 π-Elektronen als Aromat gilt, enthalten auch Cyclopropenium-Salze aromatische Kationen:

Cyclopropenylchloride-Kation.svg

Der Cyclopropenylring ist deutlich kleiner als der Benzolring, da hier n = 0 ist, während beim Benzol n = 1 ist.

Ebenfalls aromatisch ist das negativ geladene Cyclopentadienyl-Anion, das in Metallocenen wie Ferrocen vorkommt:

Das Cyclopentadienyl-Anion

Wie beim Benzol ist hier n = 1.

Reaktionen von Aromaten

Am wichtigsten sind Substitutionsreaktionen, beispielsweise

Einteilung der Aromaten

Kriterien

Aromatische Systeme
Fünfringe Kondensierte Fünfringe
Furan.svg
Furan
Benzofuran2.svg
Benzofuran
Isobenzofuran.svg
Isobenzofuran
Pyrrol2.svg
Pyrrol
Indol2.svg
Indol
Isoindol.svg
Isoindol
Thiophen.svg
Thiophen
Benzothiophen.svg
Benzothiophen
Benzo c thiophen.svg
Benzo[c]thiophen
Imidazol.svg
Imidazol
Benzimidazol.svg
Benzimidazol
Purin.svg
Purin
Pyrazol.svg
Pyrazol
Indazol.svg
Indazol
 
Oxazol.svg
Oxazol
Benzoxazol.svg
Benzoxazol
 
Isoxazol.svg
Isoxazol
Benzisoxazol.svg
Benzisoxazol
 
Thiazol.svg
Thiazol
Benzothiazol.svg
Benzothiazol
 
 
Sechsringe Kondensierte Sechsringe  
Benzol.svg
Benzol
Naphthalin.svg
Naphthalin
Anthracen.svg
Anthracen
Pyridin.svg
Pyridin
Chinolin.svg
Chinolin
Isochinolin.svg
Isochinolin
Pyrazin.svg
Pyrazin
Chinoxalin.svg
Chinoxalin
Acridin.svg
Acridin
Pyrimidin.svg
Pyrimidin
Chinazolin.svg
Chinazolin
 
Pyridazin.svg
Pyridazin
Cinnolin.svg
Cinnolin
 

Es gibt eine gewaltige Zahl (mehrere Millionen sind bekannt) verschiedenster aromatischer Verbindungen. Sie können nach verschiedenen Kriterien in Gruppen eingeteilt werden:

  • Wie alle chemischen Verbindungen, bei denen zwischen organisch (enthält Kohlenstoffatome) und anorganisch unterschieden wird, können auch die Aromaten entsprechend in organisch und anorganisch unterteilt werden. Ein anorganischer Aromat ist beispielsweise das Borazol B3N3H6, das sich formal vom Benzol C6H6 ableiten lässt, indem man die Kohlenstoffatome abwechselnd durch Stickstoffatome oder Boratome ersetzt. Allerdings ist Borazol eher auf dem Papier aromatisch denn in der Praxis: Die Elektronendichten sind stark an den Stickstoffatomen lokalisiert (anstatt über den Ring gleichmäßig verteilt) und der Ring ist stark gewellt. Auch die Reaktivität bei Angriff des Rings durch Nukleophile oder Elektrophile (im Gegensatz zum trägen Benzol) zeigt eine deutliche Bindungspolarisierung.
  • Ringsysteme, die nur aus Kohlenstoffatomen bestehen, nennt man Carbocyclen. Benzol C6H6 und Naphthalin C10H8 gehören demnach zu den Carbocyclen. Heteroaromaten enthalten dagegen wie alle Heterocyclen im Ringsystem selbst andere Atome wie etwa Stickstoff, zum Beispiel im Aromaten Pyridin C5H5N. (Pyridin leitet sich formal vom Benzol ab, indem eine C–H-Atomgruppe durch N ersetzt wird.)
  • Carbocyclische Aromaten (= mit Kohlenstoffatom-Aromatengerüst) können in (aromatische) Kohlenwasserstoffe und substituierte Aromaten unterteilt werden (entsprechend der Einteilung der organischen Verbindungen). Benzol C6H6 und Toluol C6H5-CH3 sind Kohlenwasserstoffe, Phenol C6H5-OH und Trinitrotoluol TNT C6H2(NO2)3(CH3) sind daraus durch Substitution abgeleitete Verbindungen.
  • Eine weitere Einteilung erfolgt nach der Zahl der aromatischen Cyclen: Eine der einfachsten aromatischen Verbindungen, das Benzol, besteht aus genau einem Ring. Naphthalin C10H8 ist ein Bicyclus, es besitzt ein aromatisches π-System mit 10 π-Elektronen, welches über die beiden Ringe verteilt ist.
  • Aromaten mit mehreren Ringen können eingeteilt werden in solche, bei denen die Ringe gemeinsame Atome haben (kondensierte oder anellierte Ringe), wie im Naphthalin C10H8, oder solche, mit separaten (isolierten) Ringen, beispielsweise Biphenyl C6H5-C6H5.
  • Eine weitere Einteilung kann nach der Zahl der Ringatome des aromatischen Systems erfolgen. Typisch sind sechs Ringatome, etwa beim Benzol C6H6. Um einen geschlossenen Ring zu bilden, sind mindestens drei Atome nötig, und dementsprechend existieren Aromaten mit drei, vier, fünf – etwa beim C5H5 Cyclopentadien-Anion, sieben oder mehr Atomen.
  • Nach der Ladung des aromatischen Systems, zum Beispiel ist das Cyclopentadien-Anion einfach negativ geladen.

Beispiele aromatischer Verbindungen

Kohlenwasserstoffe

Aromatische Kohlenwasserstoffe werden auch Arene genannt. Beispiele dafür sind:

Kohlenwasserstoffe mit mehreren Ringen werden polyzyklische aromatische Kohlenwasserstoffe (PAK) genannt, das sind zum Beispiel:

Annulene, also cyclische Kohlenwasserstoffe mit konjugierten Doppelbindungen, können Aromatizität aufweisen. Nach Benzol ist [14]-Annulen das kleinste aromatische Annulen, ebenfalls aromatisch sind Annulene mit 18 und 22 Kohlenstoffatomen.[2]

Aromatische Ionen

Cyclopropenyl-Kation.svg
Cyclopropenyl-Kation
Cyclopentadienyl-Anion.svg
Cyclopentadienyl-Anion
Cycloheptatrienyl-Kation.svg
Cycloheptatrienyl-Kation
Pyrylium.svg
Pyrylium-Kation

Das freie Elektronenpaar besetzt ein sp2-Hybridorbital des Sauerstoffs, liegt in der Ringebene und trägt damit nicht zum π-System bei (analog zur Elektronenstruktur des Pyridins).

Benzolderivate

Heteroaromaten

  • Furan C4H4O (Fünfring mit Sauerstoffatom)
  • Thiophen C4H4S (Fünfring mit Schwefelatom)
  • Pyridin C5H5N (Sechsring mit Stickstoffatom)
  • Pyrrol C4H4NH (Fünfring mit Stickstoff-und Wasserstoffatom)

Halogenaromaten


Antiaromaten

Siehe Hauptartikel: Antiaromat

Antiaromatische Systeme
Cyclobutadiene structure.svg
Cyclobutadien
Oxepine.svg
Oxepin
Alicyclische Verbindung

Als Antiaromaten bezeichnet man Stoffe, die die ersten drei Bedingungen eines Aromaten erfüllen (cyclisch, planar, konjugierte Doppelbindungen), statt 4n+2 π-Elektronen jedoch 4n π-Elektronen besitzen. Antiaromaten besitzen nach der Hückel-Näherung ungünstige Energieniveaus. Der einfachste Antiaromat, Cyclobutadien, nur bei sehr tiefer Temperatur (≤ 20 °K) in einer festen Matrix beständig. Tri-tert-butylcyclopentadien ist hingegen einige Stunden bei 20 °C beständig. Interessanterweise ist Cyclobutadien in der Organometallchemie als Ligand stabil, ein Beispiel ist der Komplex Cyclopentadien-eisentricarbonyl.[3]

Cyclooctatetraen besitzt 8 π-Elektronen. Es liegt jedoch nicht planar vor, sodass die Doppelbindungen nicht konjugiert sind. Die Hückel-Regel kann also nicht angewandt werden. Damit ist 1,3,5,7-Cyclooctatetraen ein Nichtaromat.

Antiaromaten sind eine Teilmenge der nicht-aromatischen alicyclischen Verbindungen. Letztere schließen zusätzlich auch nicht-konjugierte Verbindungen ein.

Möbius-Aromaten

Die 1964 von Edgar Heilbronner vorhergesagte Möbius-Aromatizität[4] setzt voraus, dass in einem cyclisch-konjugierten System die besetzten pπ-Orbitale als Möbiusband angeordnet sind, d. h. mit einer 180°-Drehung. Zusätzlich sind die π –Orbitale mit 4n Elektronen besetzt (wobei n hier eine natürliche Zahl ist). Möbius-Aromaten sind durch die Verdrehung chiral. Ob ein 2003 von Herges et al. synthetisiertes Molekül[5] wirklich einen Möbius-Aromaten darstellt oder nur die nötige Topologie besitzt, wird noch kontrovers diskutiert.[6]

Aromaten in der Natur

Viele Verbindungen der Natur besitzen aromatische Strukturen. Allgegenwärtig sind in Proteinen die Aminosäuren wie Tyrosin, Tryptophan oder Phenylalanin. Die DNA oder RNA, die Träger der genetischen Informationen, enthalten die Nukleinbase Adenin als Teil des Nukleotids ATP. Pflanzenfarbstoffe wie die wasserlöslichen Flavonoide, der Gerüststoff Lignin des Holzes, Kofaktoren von Enzymen wie Pyridoxalphosphat oder Pterine sind nur einige weitere Beispiele.

In den natürlichen weiblichen Sexualhormonen Estradiol, Estriol und Estron ist der Ring A des Steroidgerüstes aromatisch. Hingegen ist der Ring A bei den männlichen Sexualhormonen (Androgene) nicht aromatisch.[7]

Die biochemische Synthese und der Abbau von Aromaten ist häufig durch spezielle Enzyme realisiert. Durch den Aromatenabbau werden von Mikroorganismen auch Aromaten der unbelebten Natur, wie Schadstoffe, Pestizide oder Abfälle der chemischen Industrie, in den Kohlenstoffkreislauf zurückgeführt.

Siehe auch

Weblinks

Einzelnachweise

  1. August Kekulé: Ueber einige Condensationsproducte des Aldehyds, Liebigs Ann. Chem. 1872, 162 (1), S. 77–124; doi:10.1002/jlac.18721620110.
  2. F.A. Carey, R.J. Sundberg, Organische Chemie, VCH Weinheim 1995.
  3. Joachim Buddrus: Grundlagen der Organischen Chemie, 4. Auflage, de Gruyter Verlag, Berlin, 2011, S. 426, ISBN 978-3-11-024894-4.
  4. Edgar Heilbronner, in: Tetrahedron Lett., 1964, S. 1923.
  5. D. Ajami, O. Oeckler, A. Simon, R. Herges: Synthesis of a Möbius aromatic hydrocarbon, in: Nature, 2003; 426 pp 819.
  6. Investigation of a Putative Möbius Aromatic Hydrocarbon. The Effect of Benzannelation on Möbius [4 n]Annulene Aromaticity Claire Castro, Zhongfang Chen, Chaitanya S. Wannere, Haijun Jiao, William L. Karney, Michael Mauksch, Ralph Puchta, Nico J. R. van Eikema Hommes, Paul von R. Schleyer, in: J. Am. Chem. Soc., 2005, 127, S. 2425–2432; doi:10.1021/ja0458165.
  7. Carsten Schmuck, Bernd Engels, Tanja Schirmeister, Reinhold Fink: Chemie für Mediziner, Pearson Studium, S. 493, ISBN 978-3-8273-7286-4.

Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Aromaten — Aro|ma|ten 〈Pl.〉 aromatische Kohlenwasserstoffe [→ Aroma] * * * Aromaten   Plural, die aromatischen Verbindungen …   Universal-Lexikon

  • aromáten — tna o prid. (ȃ) zastar. blago dišeč, vonjav: aromaten gozdni zrak …   Slovar slovenskega knjižnega jezika

  • Aromaten — A|ro|ma|ten 〈Pl.; Chemie〉 = aromatische Kohlenwasserstoffe [Etym.: → Aroma] …   Lexikalische Deutsches Wörterbuch

  • Aromaten-Metall-Komplex — A|ro|ma|ten Me|tạll Kom|plex: metallorganische, meist als ↑ Pi Komplex vorliegende Verb. aus einem Übergangsmetall Zentralatom u. einem oder mehreren Aromaten als Liganden, vgl. Metallocene u. a. Sandwich Verbindungen …   Universal-Lexikon

  • Zweitsubstitution am Aromaten — Unter der elektrophilen aromatischen Substitution abgekürzt als SEAr versteht man eine elektrophile Substitutionsreaktion an einer aromatischen Verbindung. Während bei Aliphaten Substitutionen häufig nukleophiler Natur sind, werden Aromaten… …   Deutsch Wikipedia

  • Polycyclische Aromaten — Polycyclische aromatische Kohlenwasserstoffe (kurz PAK oder aus dem Englischen PAH = Polycyclic Aromatic Hydrocarbons) bilden eine Stoffgruppe von organischen Verbindungen, die aus mindestens zwei und mehreren miteinander verbundenen… …   Deutsch Wikipedia

  • Polyzyklische Aromaten — Polycyclische aromatische Kohlenwasserstoffe (kurz PAK oder aus dem Englischen PAH = Polycyclic Aromatic Hydrocarbons) bilden eine Stoffgruppe von organischen Verbindungen, die aus mindestens zwei und mehreren miteinander verbundenen… …   Deutsch Wikipedia

  • BTX-Aromaten — BTX Aromaten,   Abkürzung für die technisch besonders wichtigen, auf petrochemischem Weg hergestellten aromatischen Verbindungen Benzol, Toluol und Xylol …   Universal-Lexikon

  • polyzyklische Aromaten — polyzyklische Aromaten,   polyzyklische aromatische Kohlenwasserstoffe, Abkürzung PAK, aus mehreren kondensierten (anellierten) Benzolringen bestehende Kohlenwasserstoffe, die bei der Pyrolyse (Verkokung, Verschwelung, Verkohlung) organische… …   Universal-Lexikon

  • Antiaromaten — Als Aromaten (aromatische Verbindungen) oder auch Arene werden in der organischen Chemie Verbindungen bezeichnet, die einen aromatischen Ring enthalten. Aromatische Ringe sind ein zyklisches Strukturmotiv aus konjugierten Doppelbindungen und/oder …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”