Protein
Eine Darstellung der 3D-Struktur von Myoglobin mit farbigen α-Helices. Dies war das erste Protein, dessen Struktur mit Hilfe der Kristallstrukturanalyse aufgeklärt wurde.

Proteine oder Eiweiße (seltener: Eiweißstoffe) sind aus Aminosäuren aufgebaute biologische Makromoleküle. Proteine finden sich in allen Zellen und verleihen ihnen nicht nur Struktur, sondern sind auch „molekulare Maschinen“, die Metabolite transportieren, Ionen pumpen, chemische Reaktionen katalysieren und Signalstoffe erkennen.

Das Wort Protein wurde erstmals 1839 in einer Veröffentlichung[1] von Gerardus Johannes Mulder benutzt. Es wurde ihm 1838 von Jöns Jakob Berzelius vorgeschlagen, der es von dem griechischen Wort πρωτεῖος (proteios, „grundlegend“), von πρῶτος (protos, „erster“), abgeleitet hatte. Dahinter stand die falsche Idee, dass alle Proteine auf einer gemeinsamen Grundsubstanz basieren.[2] Daraus entstand ein heftiger Streit mit Justus von Liebig.

Die Gesamtheit aller Proteine in einem Lebewesen, einem Gewebe, einer Zelle oder einem Zellkompartiment, unter exakt definierten Bedingungen und zu einem bestimmten Zeitpunkt, wird als Proteom bezeichnet.

Inhaltsverzeichnis

Proteinbiosynthese

Hauptartikel: Proteinbiosynthese

Bausteine der Proteine sind bestimmte als proteinogen, also proteinaufbauend, bezeichnete Aminosäuren, die durch Peptidbindungen zu Ketten verbunden sind. Beim Menschen handelt es sich um 21 verschiedene Aminosäuren – die 20 seit langem bekannten, sowie Selenocystein. Auf neun Aminosäuren ist der menschliche Organismus besonders angewiesen, denn sie sind essenziell, das bedeutet, dass der Körper sie nicht selbst herstellen kann, sondern mit der Nahrung aufnehmen muss. Die Aminosäureketten können eine Länge von bis zu mehreren tausend Aminosäuren haben, wobei man Aminosäureketten mit einer Länge von unter ca. 100 Aminosäuren als Peptide bezeichnet und erst ab einer größeren Kettenlänge von Proteinen spricht. Die molekulare Größe eines Proteins wird in der Regel in Kilo-Dalton (kDa) angegeben. Titin, das mit ca. 3600 kDa größte bekannte menschliche Protein, besteht aus über 30.000 Aminosäuren und beinhaltet 320 Proteindomänen.

Die Aminosäurensequenz eines Proteins – und damit sein Aufbau – ist in der Desoxyribonukleinsäure (DNA) kodiert. Der dazu verwendete genetische Code hat sich während der Evolution der Lebewesen kaum verändert. In den Ribosomen, der „Proteinproduktionsmaschinerie“ der Zelle, wird diese Information verwendet, um aus einzelnen Aminosäuren ein Proteinmolekül zusammenzusetzen, wobei die Aminosäuren in einer ganz bestimmten, von der DNA vorgegebenen Reihenfolge verknüpft werden.

Das haploide humane Genom enthält rund 20.300 Protein-kodierende Gene – viel weniger, als vor der Sequenzierung des Genoms angenommen.[3] Tatsächlich kodieren nur etwa 1,5 Prozent der gesamten genomischen DNA für Proteine, während der Rest aus Genen für non-coding RNA, sowie Introns, regulatorischer DNA und nichtkodierenden Desoxyribonukleinsäuren besteht.[4] Da viele der Protein-kodierenden Gene, z. B. durch alternatives Splicing des Primärtranskripts (Präkursor-mRNA) eines Gens mehr als ein Protein produzieren, kommen im menschlichen Körper weit mehr als nur 20.300 verschiedene Proteine vor. Darüber hinaus kennt man heute Proteine, die aus Exonen von Genen aus räumlich weit entfernten Regionen, mitunter sogar unterschiedlichen Chromosomen, aufgebaut sind.[5] Mithin ist die traditionelle Ein-Gen-ein-Enzym-Hypothese (auch: Ein-Gen-eine mRNA-ein-Protein-Hypothese) für höhere Organismen heute nicht mehr haltbar.[6][7]

Proteinstruktur

Anzahl der beteiligten Aminosäuren

Balkengrafik, die die Anzahl der bekannten Proteine mit einer bestimmten Anzahl Aminosäuren darstellt. Am häufigsten kommen Proteine mit 100 bis 300 Aminosäuren vor.

Die kleinsten Proteine werden als Peptide bezeichnet. Dipeptide sind z.B. aus nur zwei Aminosäuren aufgebaut. Das größte bekannte Protein ist das Muskelprotein Titin und besteht aus über 30.000 Aminosäuren.

Proteine brauchen, um ihre Funktion ausüben zu können, eine Mindestgröße. Zwar können bereits Di- und Tripeptide als Hormon agieren, für eine Enzymfunktion jedoch sind mindestens 50 bis 100 Aminosäuren notwendig. Andererseits können Proteine nicht unbegrenzt viele Aminosäuren enthalten. Die Zeit, die der Zusammenbau (Proteinbiosynthese) der Aminosäurenkette benötigt, hängt direkt von der Anzahl der Aminosäuren ab. Außerdem steht nur eine bestimmte Menge Aminosäuren zur Verfügung. Zuletzt sammeln sich in der DNA im Lauf der Jahre Mutationen, die besonders die großen Proteine betreffen. Daher haben die meisten Proteine weniger als 1,000 Aminosäuren, und am häufigsten sind solche, die zwischen 100 und 300 Aminosäuren aufweisen (siehe Balkengrafik).

Räumlicher Aufbau

Die vier Ebenen der Proteinstruktur, von oben nach unten: Primärstruktur, Sekundärstruktur (β-Faltblatt links, α-Helix rechts), Tertiär- und Quartärstruktur.

Die räumliche Struktur bedingt die Wirkungsweise der Proteine. Die Proteinstruktur lässt sich auf vier Betrachtungsebenen beschreiben:

  • Als Primärstruktur eines Proteins wird die Abfolge (Sequenz) der einzelnen Aminosäuren einer Polypeptidkette bezeichnet. Vereinfacht gesagt könnte man sich eine Kette vorstellen, in der jedes Kettenglied eine Aminosäure darstellt (Schreibweise: AS1–AS2–AS3–AS4- ...). Die Primärstruktur beschreibt lediglich die Aminosäurensequenz, jedoch nicht den räumlichen Aufbau des Proteins.
  • Viele Proteine müssen sich, um funktionsfähig sein zu können, zu einem Proteinkomplex zusammenlagern, der so genannten Quartärstruktur. Dies kann entweder eine Zusammenlagerung von unterschiedlichen Proteinen sein oder ein Verband aus zwei oder mehr Polypeptidketten die aus ein und derselben Polypeptidkette, dem sog. Precursor, hervorgegangen sind (vgl.: Insulin). Dabei sind die einzelnen Proteine häufig durch Wasserstoffbrücken und Salzbrücken aber auch durch kovalente Bindungen miteinander verknüpft. Die einzelnen Untereinheiten eines solchen Komplexes werden als Protomere bezeichnet. Einige Protomere können ihre Funktion auch als eigenständige Proteine besitzen, aber viele erreichen ihre Funktionalität nur im Komplex. Als Beispiel für aus mehreren Proteinen zusammengelagerte Komplexe können die Immunglobuline (Antikörper) dienen, bei denen jeweils zwei identische schwere und zwei identische leichte Proteine über insgesamt vier Disulfidbrücken zu einem funktionsfähigen Antikörper verbunden sind.
  • Einige Proteine ordnen sich noch in einer über die Quartärstruktur hinausgehenden, molekular aber bereits ebenso prädeterminierten „Überstruktur“ oder „Suprastruktur“ an, wie Kollagen in der Kollagenfibrille oder Aktin, Myosin und Titin im Sarkomer.

Die Einteilung in Primär- bis Quartärstruktur erleichtert das Verständnis und die Beschreibung der sequentiellen Faltung von Proteinen. Unter physiologischen Bedingungen muss eine definierte Primärstruktur zu einer definierten Tertiärstruktur (oder Quartärstruktur) führen. Anders gesagt: Der Informationsgehalt, der sich in einer bestimmten dreidimensionalen Proteinstruktur äußert, ist bereits in der linearen Primärstruktur (d.h. in der „eindimensionalen“ Aminosäuresequenz) enthalten.

Viele komplexe Proteine können sich nicht spontan falten, also ihre physiologische Struktur einnehmen, sondern brauchen dazu Faltungshelfer, sogenannte Chaperone. Die Chaperone binden an neugebildete (oder auch beschädigte, denaturierte) Aminosäureketten, und verhelfen ihnen unter Verbrauch chemischer Energie zu ihrer Struktur.

Man unterscheidet zwei Hauptgruppen von Proteinen:

  • die globulären Proteine, deren Tertiär- oder Quartärstruktur annähernd kugel- oder birnenförmig aussieht und die meist in Wasser oder Salzlösungen gut löslich sind (beispielsweise das Protein des Eiklars, Ov-Albumin genannt),
  • die fibrillären Proteine, die eine fadenförmige oder faserige Struktur besitzen, meist unlöslich sind und zu den Stütz- und Gerüstsubstanzen gehören (beispielsweise die Keratine in den Haaren und Fingernägeln, Kollagen, Actin und Myosin für die Muskelkontraktion).

Proteinoberfläche

Oberfläche des Proteins 1EFN, dessen Rückgrat im Bild oben gezeigt ist. Erstellt mit BALLView
Bovine Trypsin Inhibitor ohne Wasserstoffatome, dargestellt als Wireframe-Oberfläche. Erstellt mit BALLView

Vereinfachend wird stellvertretend für die komplexe Proteinstruktur oft nur das Rückgrat (Backbone) des Proteins abgebildet (z.B. Abbildungen rechts oben). Zum Verständnis der Funktion ist jedoch die Oberfläche des Proteins von großer Bedeutung. Da die Seitenketten der Aminosäuren vom Rückgrat aus in den Raum ragen, tragen auch sie entscheidend zur Struktur bei: Der Verlauf des Rückgrats bestimmt den generellen dreidimensionalen Aufbau, aber die Konturen der Oberfläche und die biochemischen Eigenschaften des Proteins werden von den Seitenketten bestimmt.

3D-Darstellung

Zum besseren Verständnis von Aufbau und Funktion ist es unerlässlich, die räumliche Gestalt von Proteinen mithilfe geeigneter Grafikprogramme darzustellen.

Für weitere Details siehe den Artikel Molekulardesign

Das meistverbreitete Dateiformat für Atompositionsdaten von Proteinen ist das PDB-Format der freizugänglichen Protein Data Bank. Eine PDB-Datei enthält zeilenweise Einträge für jedes Atom im Protein, sortiert nach der Aminosäuresequenz; im einfachsten Fall sind das Atomart und kartesische Koordinaten. Es handelt sich also um ein systemunabhängiges Klartext-Format. Auf Basis dieser Datei kann dann z.B. in Jmol die 3D-Struktur dargestellt werden.

Funktionen von Proteinen im Organismus

Proteine können im Organismus folgende, sehr spezielle Funktionen haben:

  • Schutz, Verteidigung gegen Mikroorganismen
  • Körperstruktur, Bewegung
    • Kollagene, die bis zu 1/3 des gesamten Körperproteins ausmachen können, sind Strukturproteine der Haut, des Bindegewebes und der Knochen. Als Strukturproteine bestimmen sie den Aufbau der Zelle und damit letztlich die Beschaffenheit der Gewebe und des gesamten Körperbaus.
    • In den Muskeln verändern Myosine und Aktine ihre Form und sorgen dadurch für Muskelkontraktion und damit für Bewegung.
    • Keratinstrukturen wie Haare/Wolle, Hörner, Nägel/Klauen, Schnäbel, Schuppen und Federn
    • Seidenfäden bei Spinnen und Insekten
  • Stoffumsatz (Metabolismus), Transport, Signalfunktion
    • Enzyme übernehmen Biokatalysefunktionen, d.h. sie ermöglichen und kontrollieren sehr spezifische (bio)chemische Reaktionen in Lebewesen.
    • Als Ionenkanäle regulieren Proteine die Ionenkonzentration in der Zelle, und damit deren osmotische Homöostase sowie die Erregbarkeit von Nerven und Muskeln.
    • Als Transportproteine übernehmen sie den Transport körperwichtiger Substanzen wie z. B. Hämoglobin, das im Blut für den Sauerstofftransport zuständig ist, oder Transferrin, das Eisen im Blut transportiert.
    • In Zellmembranen befinden sich Membranrezeptoren; meist Komplexe aus mehreren Proteinen (auch Multiproteinkomplexe genannt), die Substanzen außerhalb der Zelle erkennen und binden. Dadurch ergibt sich eine Konformationsänderung, die dann als Transmembransignal im Innern der Zelle erkannt wird.
    • Manche (meist kleinere Proteine) steuern als Hormone Vorgänge im Körper.
    • Als Blutgerinnungsfaktoren verhindern die Proteine einerseits einen zu starken Blutverlust bei einer Verletzung eines Blutgefäßes und andererseits eine zu starke Gerinnungsreaktion mit Blockierung des Gefäßes.
    • Auto-fluoreszierende Proteine in Quallen.
  • Reservestoff
    • Als Reservestoff kann der Körper Proteine im Hungerzustand als Energielieferanten verwenden. Dabei können die in Leber, Milz und Muskeln gespeicherten Proteine nach Proteolyse und Abbau der entstehenden Aminosäuren zu Pyruvat entweder zur Glukoneogenese oder direkt zur Energiegewinnung genutzt werden.

Mutationen in einem bestimmten Gen können potentiell Veränderungen im Aufbau des entsprechenden Proteins verursachen, woraus sich folgende mögliche Auswirkungen auf die Funktion ergeben:

  • Die Mutation bewirkt einen Verlust in der Proteinfunktion; solche Fehler mit teils vollständigem Wegfall der Proteinaktivität liegen vielen erblichen Krankheiten zugrunde.
  • Die Mutation bewirkt bei einem Enzym die Erhöhung der Enzymaktivität. Dies kann vorteilhafte Wirkung haben oder ebenfalls zu einer Erbkrankheit führen.
  • Trotz der Mutation bleibt die Funktion des Proteins erhalten. Dies wird als stille Mutation bezeichnet.
  • Die Mutation bewirkt eine funktionelle Veränderung, die vorteilhaft für die Zelle, das Organ oder den Organismus ist. Ein Beispiel wäre ein Transmembranprotein, dass vor der Mutation nur in der Lage ist, den stoffwechselbaren Metaboliten A aufzunehmen, während nach der Mutation auch der Metabolit B regulierbar aufgenommen werden kann und sich dadurch z.B. die Nahrungsmittelvielfalt erhöht.

Proteinchemie

Nachweis von Proteinen

Folgende Nachweise dienen zur Quantifizierung von Proteinen:

Aufreinigung von Proteinen

Hauptartikel: Proteinreinigung

Die Aufreinigung und Anreicherung von Proteinen aus biologischem Material ist ein wichtiger Schritt in der biochemischen Identifikation und Charakterisierung von neu entdeckten Proteinen.

In der Biotechnologie und dort besonders bei rekombinanten Proteinen ist die reproduzierbare, sorgfältige Proteinreinigung – meist in großem Maßstab – eine wichtige Voraussetzung zur Verwendung dieser Proteine in der Diagnostik oder Therapie.

Denaturierung

Hauptartikel: Denaturierung (Biochemie)

Sowohl durch chemische Einflüsse, wie zum Beispiel Säuren, Salze oder organische Lösungsmittel, als auch durch physikalische Einwirkungen, wie hohe oder tiefe Temperaturen oder auch Druck, können sich die Sekundär- und Tertiärstruktur und damit auch die Quartärstruktur von Proteinen ändern, ohne dass sich die Reihenfolge der Aminosäuren (Primärstruktur) ändert. Dieser Vorgang heißt Denaturierung und ist in der Regel nicht umkehrbar, das heißt der ursprüngliche dreidimensionale räumliche Aufbau kann ohne Hilfe nicht wiederhergestellt werden. Bekanntestes Beispiel dafür ist das Eiklar im Hühnerei, das beim Kochen fest wird, weil sich der räumliche Aufbau der Proteinmoleküle geändert hat. Der ursprüngliche flüssige Zustand kann nicht mehr hergestellt werden. Das Wiederherstellen des ursprünglichen Zustandes des denaturierten Proteins heißt Renaturieren.

Menschen denaturieren, das heißt kochen, ihre Speisen, um sie leichter verdaulich zu machen. Durch die Denaturierung ändern sich die physikalischen und physiologischen Eigenschaften der Proteine, wie z. B beim Spiegelei, das durch die Hitze in der Pfanne denaturiert wird. Hohes Fieber kann deshalb für den Menschen lebensgefährlich werden. Denn durch die zu hohe Körpertemperatur werden beim Fieber körpereigene Proteine denaturiert und können somit ihre lebensnotwendigen Aufgaben im Organismus nicht mehr erfüllen. Einige Proteine der roten Blutkörperchen denaturieren beispielsweise bereits bei 42 °C. Das Fieber hat eigentlich aber eine schützende Funktion, nicht eine zerstörende. Denn die hohe Temperatur beim Fieber soll Eindringlinge und Fremdkörper, sogenannte Antigene, zerstören und unschädlich machen. Diese Antigene denaturieren meist schon bei geringeren Temperaturen als die körpereigenen Proteine.

Die bei chemischer Spaltung der Proteinketten (Proteolyse) entstehenden Teilstücke nennt man Peptone.

Durch Reaktive Sauerstoffspezies können Proteine oxidiert werden. Der Vorgang nenn sicht Proteinoxidation und spielt bei Alterungsprozessen und einer Reihe von pathologischer Zustände eine wichtige Rolle. Die Oxidation kann zu einem weitgehenden Funktionsverlust und zu Ansammlung von degenerierten Proteinen in der Zelle führen.[8]

Wirtschaftliche Bedeutung

Die Gesamtmenge der als nachwachsende Rohstoffe in der stofflichen Nutzung verwendeten Proteine wird für Deutschland im Regelfall mit etwa 55.000 t pro Jahr angegeben.[9] Genaue Angaben über die Herkunft dieser Proteine gibt es nicht, es ist jedoch anzunehmen, dass sie zu einem großen Teil tierischer Herkunft sind.

Der Großteil pflanzlicher Proteine wird für die Futtermittelindustrie aufgewendet, so die als Nebenprodukte bei der Pflanzenölpressung und -extraktion anfallenden Preßrückstände (z. B. Raps- und Sojakuchen, Extraktionsschrot) und Nebenprodukte der Gewinnung von Stärke aus Getreide. Pflanzen, die zur Hauptnutzung als Proteinpflanzen angebaut werden, wie bspw. Lupine, Eiweißerbse und Ackerbohne, haben nur eine geringe Bedeutung[10] – die Gesamtfläche für den Anbau dieser Pflanzen als Nachwachsende Rohstoffe in Deutschland liegt bei etwa 30 ha pro Jahr.[11] Etwa 1.000 t Weizenproteine finden jährlich Einsatz in der Chemischen Industrie.

Von zentraler Bedeutung für die chemisch-technische und biotechnologische Industrie sind dagegen tierische Proteine. Dabei spielt vor allem die Gelatine eine zentrale Rolle, die in Europa vor allem aus Rinderspalt, Schweineschwarten sowie Knochen von Rindern und Schweinen gewonnen wird. In Deutschland werden jährlich etwa 32.000 t Gelatine in Speisequalität hergestellt, die europäische Gesamtproduktion beträgt 120.000 t (70 % Schweineschwarten, 18 % Knochen, 10 % Rinderspalt, 2 % Sonstige).[12][13] Verwendet werden in Deutschland etwa 90.000 t, wobei 2/3 im Ernährungsbereich und von dem Rest etwa die Hälfte für den Futtermittelbereich aufgewendet werden. Etwa 15.000 t werden in der chemischen und pharmazeutischen Industrie verwendet. Dabei finden sich die Haupteinsatzbereiche in der Pharmaindustrie, mit Umhüllungen von Tabletten und Vitaminpräparaten (Hart- und Weichkapseln) sowie Gelatinezäpfchen. Außerdem wird Gelatine für blutstillende Schwämmchen sowie als Blutplasmaersatz eingesetzt. In der analogen Fotografie stellt Gelatine die Basis für die fotoempfindlichen Schichten auf dem Film und dem Fotopapier dar. Auch moderne Druckerpapiere zum Ausdrucken von Farbbildern sind mit Gelatine beschichtet.[13]

Neben Gelatine stellt Casein eine wichtige Proteinquelle für die chemische Industrie dar. Das aus Milcheiweiß gewonnene Protein wird vor allem als Beschichtungsmaterial für Glanzpapiere sowie als Zusatz für Streichfarben verwendet (ca. 1–2 % je nach Hersteller). Zudem findet es Verwendung als Etikettenkleber auf Glasflaschen. Jährlich werden in Deutschland etwa 8.000 bis 10.000 t Casein eingesetzt.

Die Nutzung von Proteinen aus Blutmehl zur Herstellung von Biokunststoffen (z. B. Pflanztöpfe) befindet sich noch in der Entwicklung, ebenso ein Verfahren zur biotechnologischen Herstellung von Fasern aus Seidenproteinen zur Verarbeitung in Schäumen, Vliesstoffen oder Folien.[14][15]

Etwa 6.000 bis 7.000 t Proteine sind Autolyseprodukte aus Hefen (Hefeextrakte). Diese finden Anwendung vor allem in der Pharmazeutischen Industrie und der Nahrungsmittelindustrie sowie in der Biotechnologischen Industrie als Nährlösung für Mikroorganismen.

Proteinlieferanten

Sehr proteinhaltige Nahrungsmittel sind:

Studien des amerikanischen Biochemikers Thomas Osborne und Lafayette Mendel, Professor für Physiologische Chemie in Yale, von 1914 zeigten, dass Ratten, die tierisches Eiweiß erhielten, schneller an Gewicht zunahmen, als Ratten, die nur pflanzliches Eiweiß erhielten. Daraus wurde voreilig geschlossen, dass tierisches Eiweiß „hochwertiger“ als pflanzliches Eiweiß sei. Tatsächlich kann man aber mit wenigen hochwertigen Pflanzenproteinen (Kartoffel, Soja) eine gleichwertige Ernährung erreichen. Es kommt bei Protein als Nahrung allein auf den Anteil an deren Bausteinen, den Aminosäuren, an.

Für Details zum Thema siehe die Artikel essentielle Aminosäure, biologische Wertigkeit und Aminosäureindex

Proteinmangel

Protein (Eiweiß) hat eine große Anzahl von Aufgaben im menschlichen Körper. Es ist zum Aufbau und zum Erhalt der Körperzellen notwendig und hilft bei der Heilung von Wunden und Krankheiten. Den Empfehlungen der Deutschen Gesellschaft für Ernährung zufolge sollten Erwachsene täglich etwa 0,8 Gramm Protein pro Kilogramm Körpergewicht mit der Nahrung zu sich nehmen. Bei Kindern und Jugendlichen ist der Bedarf mit 0,9 Gramm pro Kilogramm Körpergewicht um 12,5 % erhöht, bei schwangeren und stillenden Frauen ist der Bedarf um circa 20 bis 30 Prozent erhöht.[16] Bei körperlicher Aktivität steigt der Bedarf an Protein hingegen nicht.[17]

Ein Mangel (Eiweißmangel) kann folgende Symptome hervorrufen:

  • Haarausfall (Haare bestehen zu 97 bis 100 % aus Proteinen – Keratin)
  • Im schlimmsten Fall kommt es zur Eiweißmangelkrankheit Kwashiorkor. Menschen (meist Kinder), die an Kwashiorkor leiden, erkennt man an ihrem sogenannten Hungerbauch, der durch eine übermäßige Einlagerung von Wasser (Ödeme) hervorgerufen wird. Weitere Symptome sind:
  • Andauernder Eiweißmangel führt zum Marasmus und zum Tod.

Zu Eiweißmangel kommt es in den Industrieländern allerdings höchst selten und auch nur bei extrem proteinarmen Ernährungsformen. Die durchschnittliche deutsche Mischkost dagegen enthält mit 100 Gramm Eiweiß pro Tag mehr als genug Proteine. Obwohl häufig in der Werbung Eiweißpulver als essentiell notwendig für Breitensportler angepriesen werden, deckt „Unsere übliche Ernährung [...] auch den Eiweißbedarf von Sportlern ab“, heißt es dazu in einem Bericht des Ministeriums für Ernährung und Ländlichen Raum Baden-Württembergs.

Siehe auch

Literatur

  • Jeremy M. Berg, John L. Tymoczko, Lubert Stryer: Biochemie. 6. Auflage. Spektrum, Heidelberg 2007, ISBN 3-8274-1800-3

Weblinks

Wiktionary Wiktionary: Protein – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Journal für praktische Chemie 16, 129 (1839) - Englische Übersetzung
  2. Duden - Deutsches Universalwörterbuch. 4. Aufl. Mannheim 2001.
  3. International Human Genome Sequencing Consortium: Finishing the euchromatic sequence of the human genome.. In: Nature. 431, Nr. 7011, 2004, S. 931–45. doi:10.1038/nature03001. PMID 15496913. [1]
  4. International Human Genome Sequencing Consortium: Initial sequencing and analysis of the human genome.. In: Nature. 409, Nr. 6822, 2001, S. 860–921. doi:10.1038/35057062. PMID 11237011. [2]
  5. Kapranov, P. et al.: Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays. In: Genome Res. 15, Nr. 7, 2005, S. 987-997. PMID 15998911.
  6. Rupert, J. L.: Genomics and environmental hypoxia: what (and how) we can learn from the transcriptome. In: High Alt Med Biol. 9, Nr. 2, 2008, S. 115-122. PMID 18578642.
  7. Pennisi, E.: Genomics. DNA study forces rethink of what it means to be a gene. In: Science. 15, Nr. 316, 2007, S. 1556-1557. PMID 17569836.
  8. E. R. Stadtman und R. L. Levine: Chemical modification of proteins by reactive oxygen species. In: Redox Proteomics: From Protein Modifications To Cellular Dysfunction And Diseases.' I. Dalle-Donne, A. Scaloni und A. Butterfield (Editors), Wiley Interscience Series on Mass Spectrometry, 2006, ISBN 0-471-72345-2
  9. Fachagentur Nachwachsende Rohstoffe e. V. (Hrsg.): Daten und Fakten zu nachwachsenden Rohstoffen. Gülzow 2006; Seite 57 (PDF-Download).
  10. Ralf Pude, Barbara Wenig: Pflanzen für die Industrie. Pflanzen, Rohstoffe, Produkte. Fachagentur Nachwachsende Rohstoffe e. V., Gülzow 2005; Seite 11. (PDF-Download).
  11. Dominik Vogt, Christian Gahle, Michael Karus: Erstellung eines Überblicks zu Marktsituation und Trends zur stofflichen Nutzung nachwachsender Rohstoffe (NR) in Nordrhein-Westfalen. Erstellt durch: nova-Institut GmbH, Hürth 2005.
  12. K. Rappold: Gelatine - Ein natürliches Nahrungsmittel. bmi aktuell 1/2004, Hrsg. Informationszentrale für Backmittel und Backgrundstoffe zur Herstellung von Brot und Feinen Backwaren e.V.
  13. a b Homepage Gelatine Manufacturers of Europe, Abgerufen 18. September 2008.
  14. Verbeek, Johann und van den Berg, Lisa, 2008: Proteinous Bioplastics from Bloodmeal. In: bioplastics magazine 05/2008, S. 30.
  15. Geuder, Matthias, 2008: Biopolymere - Rohstoffe, Technologien, Anwendungen. In: Biowerkstoff-Report Okt./Nov./Dez. 2008, S.46. (PDF).
  16. DGE: Referenzwerte für die Nährstoffzufuhr
  17. DGE: Reference Values for Nutrient Intake, 1. Auflage, Frankfurt/Main, Umschau/Braus, 2000, ISBN 3-8295-7114-3, S. 31

Wikimedia Foundation.

Synonyme:

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Protein S — is a vitamin K dependent plasma glycoprotein synthesized in the liver. In the circulation, Protein S exists in two forms: a free form and a complex form bound to complement protein C4b. FunctionThe best characterized function of Protein S is its… …   Wikipedia

  • Protein A — is a 40 60 kDa MSCRAMM surface protein originally found in the cell wall of the bacteria Staphylococcus aureus . It is encoded by the spa gene and its regulation is controlled by DNA topology, cellular osmolarity, and a two component system… …   Wikipedia

  • Protein L — is a 36,000 dalton immunoglobulin binding protein isolated from the bacteria Peptostreptococcus magnus . Unlike Protein A and Protein G, which bind to the Fc region of immunoglobilins (antibodies), Protein L binds antibodies through light chain… …   Wikipedia

  • Protein A/G — is a recombinant fusion protein that combines IgG binding domains of both Protein A and Protein G. Protein A/G contains four Fc binding domains from Protein A and two from Protein G, yielding a final mass of 50,460 daltons. The binding of Protein …   Wikipedia

  • Protein C — Vorhandene Strukturdaten …   Deutsch Wikipedia

  • Protein-C — Vorhandene Strukturdaten: 1aut …   Deutsch Wikipedia

  • Protein Z — protein Name = protein Z caption = width = HGNCid = 9460 Symbol = PROZ AltSymbols = EntrezGene = 8858 OMIM = 176895 RefSeq = NM 003891 UniProt = P22891 PDB = ECnumber = Chromosome = 13 Arm = q Band = 34 LocusSupplementaryData = Protein Z is a… …   Wikipedia

  • Protein G — is an immunoglobulin binding protein expressed in group C and G Streptococcal bacteria much like Protein A but with differing specificities. It is a 65 kDa (G148 protein G) and a 58 kDa (C40 protein G) [1] cell surface protein that has found… …   Wikipedia

  • Protein — Pro te*in, n. [Gr. prw^tos first: cf. prwtei^on the first place.] (Physiol. Chem.) any polymer of an amino acid joined by peptide (amide) bonds. Most natural proteins have alpha amino acids as the monomeric constituents. All classical enzymes are …   The Collaborative International Dictionary of English

  • Protein-S — Vorhandene Strukturdaten: 1z6c Gr …   Deutsch Wikipedia

  • Protein S — Vorhandene Strukturdaten …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”